Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Scientific Computing with R

You're reading from   Mastering Scientific Computing with R Employ professional quantitative methods to answer scientific questions with a powerful open source data analysis environment

Arrow left icon
Product type Paperback
Published in Jan 2015
Publisher
ISBN-13 9781783555253
Length 432 pages
Edition 1st Edition
Languages
Arrow right icon
Toc

Table of Contents (12) Chapters Close

Preface 1. Programming with R FREE CHAPTER 2. Statistical Methods with R 3. Linear Models 4. Nonlinear Methods 5. Linear Algebra 6. Principal Component Analysis and the Common Factor Model 7. Structural Equation Modeling and Confirmatory Factor Analysis 8. Simulations 9. Optimization 10. Advanced Data Management Index

Rejection sampling


So far, we have showed you how to simulate data from well-defined distributions. However, you may also wish to simulate data from an unknown distribution. The first method we will show you to simulate random variables is through rejection sampling. This method is based on the idea that if you want to sample a random variable from a target distribution, you just have to sample the region under the curve of its density function. For example, let's consider a triangle distribution defined by the following density function:

First, let's plot the function in R by creating a triangle() function, as follows:

> triangle <- function(x) {(abs(x) < 2) * (2 - abs(x))}

Now, let's create a vector x to contain the x values and plot the values as follows:

> x<-seq(from=-3,to=3,by=0.001)
> plot(x, triangle(x), type = "l", ylim = c(0,2), ylab = as.character("f(x)=(|x < 2|)(2-|x|)"), cex.lab=1.3)

The result is shown in the following plot:

Now if we would like to generate pseudorandom...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image