Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Principles of Data Science

You're reading from   Principles of Data Science Mathematical techniques and theory to succeed in data-driven industries

Arrow left icon
Product type Paperback
Published in Dec 2016
Publisher Packt
ISBN-13 9781785887918
Length 388 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Sinan Ozdemir Sinan Ozdemir
Author Profile Icon Sinan Ozdemir
Sinan Ozdemir
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. How to Sound Like a Data Scientist 2. Types of Data FREE CHAPTER 3. The Five Steps of Data Science 4. Basic Mathematics 5. Impossible or Improbable – A Gentle Introduction to Probability 6. Advanced Probability 7. Basic Statistics 8. Advanced Statistics 9. Communicating Data 10. How to Tell If Your Toaster Is Learning – Machine Learning Essentials 11. Predictions Don't Grow on Trees – or Do They? 12. Beyond the Essentials 13. Case Studies Index

What are statistics?


This might seem like an odd question to ask, but I am frequently surprised by the number of people who cannot answer this simple and yet powerful question: what are statistics? Statistics are the numbers you always see on the news and in the paper. Statistics are useful when trying to prove a point or trying to scare you, but what are they?

To answer this question, we need to back up for a minute and talk about why we even measure them in the first place. The goal of this field is to try to explain and model the world around us. To do that, we have to take a look at the population.

We can define a population as the entire pool of subjects of an experiment or a model.

Essentially, your population is who you care about. Who are you trying to talk about? If you are trying to test if smoking leads to heart disease, your population would be the smokers of the world. If you are trying to study teenage drinking problems, your population would be all teenagers.

Now, consider that...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image