Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Scala for Machine Learning

You're reading from   Scala for Machine Learning Leverage Scala and Machine Learning to construct and study systems that can learn from data

Arrow left icon
Product type Paperback
Published in Dec 2014
Publisher
ISBN-13 9781783558742
Length 624 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Patrick R. Nicolas Patrick R. Nicolas
Author Profile Icon Patrick R. Nicolas
Patrick R. Nicolas
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Getting Started 2. Hello World! FREE CHAPTER 3. Data Preprocessing 4. Unsupervised Learning 5. Naïve Bayes Classifiers 6. Regression and Regularization 7. Sequential Data Models 8. Kernel Models and Support Vector Machines 9. Artificial Neural Networks 10. Genetic Algorithms 11. Reinforcement Learning 12. Scalable Frameworks A. Basic Concepts Index

Linear regression

Linear regression is by far the most widely used, or at least the most commonly known, regression method. The terminology is usually associated with the concept of fitting a model to data. Linear regression can be implemented using the least squares method. Practically, the least squares method entails the minimization of the sum of the squares of the error between the observed data and the actual model.

The least squares problems fall into two categories:

  • Ordinary least squares
  • Nonlinear least squares

One-variate linear regression

Let's start with the simplest form of linear regression, which is the single variable regression, in order to introduce the terms and concepts behind linear regression. In its simplest interpretation, the one-variate linear regression consists of fitting a line to a set of data points {x, y}.

Note

Single variable linear regression is given by the following formula:

One-variate linear regression

Here, w1 is the slope, w0 is the intercept, f is the linear function that minimizes...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image