Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Functional Python Programming

You're reading from   Functional Python Programming Discover the power of functional programming, generator functions, lazy evaluation, the built-in itertools library, and monads

Arrow left icon
Product type Paperback
Published in Apr 2018
Publisher Packt
ISBN-13 9781788627061
Length 408 pages
Edition 2nd Edition
Languages
Arrow right icon
Toc

Table of Contents (18) Chapters Close

Preface 1. Understanding Functional Programming 2. Introducing Essential Functional Concepts FREE CHAPTER 3. Functions, Iterators, and Generators 4. Working with Collections 5. Higher-Order Functions 6. Recursions and Reductions 7. Additional Tuple Techniques 8. The Itertools Module 9. More Itertools Techniques 10. The Functools Module 11. Decorator Design Techniques 12. The Multiprocessing and Threading Modules 13. Conditional Expressions and the Operator Module 14. The PyMonad Library 15. A Functional Approach to Web Services 16. Optimizations and Improvements 17. Other Books You May Enjoy

Understanding Functional Programming

Functional programming defines a computation using expressions and evaluation; often these are encapsulated in function definitions. It de-emphasizes or avoids the complexity of state change and mutable objects. This tends to create programs that are more succinct and expressive. In this chapter, we'll introduce some of the techniques that characterize functional programming. We'll identify some of the ways to map these features to Python. Finally, we'll also address some ways in which the benefits of functional programming accrue when we use these design patterns to build Python applications.

Python has numerous functional programming features. It is not a purely a functional programming language. It offers enough of the right kinds of features that it confers the benefits of functional programming. It also retains all the optimization power of an imperative programming language.

We'll also look at a problem domain that we'll use for many of the examples in this book. We'll try to stick closely to Exploratory Data Analysis (EDA) because its algorithms are often good examples of functional programming. Furthermore, the benefits of functional programming accrue rapidly in this problem domain.

Our goal is to establish some essential principles of functional programming. The more serious Python code will begin in Chapter 2, Introducing Some Functional Features.

We'll focus on Python 3.6 features in this book. However, some of the examples might also work in Python 2.
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image