Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Machine Learning with ML.NET

You're reading from   Hands-On Machine Learning with ML.NET Getting started with Microsoft ML.NET to implement popular machine learning algorithms in C#

Arrow left icon
Product type Paperback
Published in Mar 2020
Publisher Packt
ISBN-13 9781789801781
Length 296 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Jarred Capellman Jarred Capellman
Author Profile Icon Jarred Capellman
Jarred Capellman
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: Fundamentals of Machine Learning and ML.NET
2. Getting Started with Machine Learning and ML.NET FREE CHAPTER 3. Setting Up the ML.NET Environment 4. Section 2: ML.NET Models
5. Regression Model 6. Classification Model 7. Clustering Model 8. Anomaly Detection Model 9. Matrix Factorization Model 10. Section 3: Real-World Integrations with ML.NET
11. Using ML.NET with .NET Core and Forecasting 12. Using ML.NET with ASP.NET Core 13. Using ML.NET with UWP 14. Section 4: Extending ML.NET
15. Training and Building Production Models 16. Using TensorFlow with ML.NET 17. Using ONNX with ML.NET 18. Other Books You May Enjoy
Getting Started with Machine Learning and ML.NET

By opening this book, you are taking the first step in disrupting your own knowledge by approaching solutions to complex problems with machine learning. You will be achieving this with the use of Microsoft's ML.NET framework. Having spent several years applying machine learning to cybersecurity, I'm confident that the knowledge you garner from this book will not only open career opportunities to you but also open up your thought processes and change the way you approach problems. No longer will you even approach a complex problem without thinking about how machine learning could possibly solve it.

Over the course of this book, you will learn about the following:

  • How and when to use five different algorithms that ML.NET provides
  • Real-world end-to-end examples demonstrating ML.NET algorithms
  • Best practices when training your models, building your training sets, and feature engineering
  • Using pre-trained models in both TensorFlow and ONNX formats

This book does assume that you have a reasonably solid understanding of C#. If you have other experience with a strongly typed object-oriented programming language such as C++ or Java, the syntax and design patterns are similar enough to not hinder your ability to follow the book. However, if this is your first deep dive into a strongly typed language such as C#, I strongly suggest picking up Learn C# in 7 Days, by Gaurav Aroraa, published by Packt Publishing, to get a quick foundation. In addition, no prior machine learning experience is required or expected, although a cursory understanding will accelerate your learning.

In this chapter, we will cover the following:

  • The importance of learning about machine learning today
  • The model-building process
  • Exploring types of learning
  • Exploring various machine learning algorithms
  • Introduction to ML.NET

By the end of the chapter, you should have a fundamental understanding of what it takes to build a model from start to finish, providing the basis for the remainder of the book.

You have been reading a chapter from
Hands-On Machine Learning with ML.NET
Published in: Mar 2020
Publisher: Packt
ISBN-13: 9781789801781
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image