Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Scala for Machine Learning

You're reading from   Scala for Machine Learning Leverage Scala and Machine Learning to construct and study systems that can learn from data

Arrow left icon
Product type Paperback
Published in Dec 2014
Publisher
ISBN-13 9781783558742
Length 624 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Patrick R. Nicolas Patrick R. Nicolas
Author Profile Icon Patrick R. Nicolas
Patrick R. Nicolas
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Getting Started 2. Hello World! FREE CHAPTER 3. Data Preprocessing 4. Unsupervised Learning 5. Naïve Bayes Classifiers 6. Regression and Regularization 7. Sequential Data Models 8. Kernel Models and Support Vector Machines 9. Artificial Neural Networks 10. Genetic Algorithms 11. Reinforcement Learning 12. Scalable Frameworks A. Basic Concepts Index

Clustering

Problems involving a large number of features for large datasets become quickly intractable, and it is quite difficult to evaluate the independence between features. Any computation that requires some level of optimization and, at a minimum, computation of first order derivatives requires a significant amount of computing power to manipulate high-dimension matrices. As with many engineering fields, a divide-and-conquer approach to classifying very large datasets is quite effective. The objective is to reduce continuous, infinite, or very large datasets into a small group of observations that share some common attributes.

Clustering

Visualization of data clustering

This approach is known as vector quantization. Vector quantization is a method that divides a set of observations into groups of similar size. The main benefit of vector quantization is that the analysis using a representative of each group is far simpler than an analysis of the entire dataset [4:2].

Clustering, also known as cluster...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image