Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Reinforcement Learning Hands-On

You're reading from   Deep Reinforcement Learning Hands-On Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more

Arrow left icon
Product type Paperback
Published in Jun 2018
Publisher Packt
ISBN-13 9781788834247
Length 546 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Maxim Lapan Maxim Lapan
Author Profile Icon Maxim Lapan
Maxim Lapan
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. What is Reinforcement Learning? 2. OpenAI Gym FREE CHAPTER 3. Deep Learning with PyTorch 4. The Cross-Entropy Method 5. Tabular Learning and the Bellman Equation 6. Deep Q-Networks 7. DQN Extensions 8. Stocks Trading Using RL 9. Policy Gradients – An Alternative 10. The Actor-Critic Method 11. Asynchronous Advantage Actor-Critic 12. Chatbots Training with RL 13. Web Navigation 14. Continuous Action Space 15. Trust Regions – TRPO, PPO, and ACKTR 16. Black-Box Optimization in RL 17. Beyond Model-Free – Imagination 18. AlphaGo Zero Other Books You May Enjoy Index

ES on HalfCheetah

In the next example, we'll go beyond the simplest ES implementation and look at how this method can be parallelized efficiently using the shared seed strategy proposed by the paper [1]. To show this approach, we'll use the environment from the roboschool library that we already experimented with in Chapter 15, Trust Regions – TRPO, PPO, and ACKTR, HalfCheetah, which is a continuous action problem where a weird two-legged creature gains reward by running forward without injuring itself.

First, let's discuss the idea of shared seeds. The performance of the ES algorithm is mostly determined by the speed that we can gather our training batch, which consists of sampling the noise and checking the total reward of the perturbed noise. As our training batch items are independent, we can easily parallelize this step to a large number of workers sitting on remote machines (that's a bit similar to the example from Chapter 11, Asynchronous Advantage...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image