Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Geospatial Data Science Quick Start Guide

You're reading from   Geospatial Data Science Quick Start Guide Effective techniques for performing smarter geospatial analysis using location intelligence

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781789809411
Length 170 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Abdishakur Hassan Abdishakur Hassan
Author Profile Icon Abdishakur Hassan
Abdishakur Hassan
Jayakrishnan Vijayaraghavan Jayakrishnan Vijayaraghavan
Author Profile Icon Jayakrishnan Vijayaraghavan
Jayakrishnan Vijayaraghavan
Arrow right icon
View More author details
Toc

Introducing Location Intelligence

"Everything that happens, happens somewhere."
- The first law of geography by Waldo Tobler

Location data is data with a geographic dimension. Location data is everywhere as all actions that occur in or near the Earth's surface happen to use geographic aspects. It is generally referred to as any data with coordinates (latitude, longitude, and sometimes altitude) but also encompasses different aggregated geographic units, including addresses, zip codes, landmarks, districts, cities, regions, and much more.

Location intelligence, on the other hand, is the process of turning geographic (spatial) data into insights and business outcomes. Any data with a geographical position, either implicitly or explicitly, requires location-aware preprocessing methods, visualization, as well as analytical methods to derive insights from it. Thus, location intelligence applications can reveal hidden patterns of spatial relationships that cannot be derived through other normal means. It leads to better decision making on spatial problems, where things happen, why they happen in some places, and the spatial trends in time-series analysis. Understanding the location dimension of today's challenges in, industrial, retail, agricultural, climate, and environment, can lead to a better understanding of why economic, social, and environmental activities tend to locate where they are.

In this chapter, we give an overview of location data and location data intelligence. Here, we briefly introduce different location data types and location data intelligence applications and examples. We cover how to identify location data from publicly available open datasets. We briefly discuss and highlight the difference between location data and other non-geographic data. At the end of this chapter, we explore how location data fits into data science and what opportunities and challenges bring location data into the interdisciplinarity of data science.

We will specifically focus on the following topics:

  • Location data
  • Location data intelligence
  • Location data and data science
  • A primer on Google Colab and Jupyter Notebooks
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image