Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Principles of Data Science
Principles of Data Science

Principles of Data Science: Mathematical techniques and theory to succeed in data-driven industries

eBook
€20.98 €29.99
Paperback
€36.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Principles of Data Science

Chapter 2. Types of Data

Now that we have a basic introduction to the world of data science and understand why the field is so important, let's take a look at the various ways in which data can be formed. Specifically, in this chapter we will look at the following topics:

  • Structured versus unstructured data
  • Quantitative versus qualitative data
  • The four levels of data

We will dive further into each of these topics by showing examples of how data scientists look at and work with data. This chapter is aimed to familiarize ourselves with the fundamental ideas underlying data science.

Flavors of data

In the field, it is important to understand the different flavors of data for several reasons. Not only will the type of data dictate the methods used to analyze and extract results, knowing whether the data is unstructured or perhaps quantitative can also tell you a lot about the real-world phenomenon being measured.

We will look at the three basic classifications of data:

  • Structured vs unstructured (sometimes called organized vs unorganized)
  • Quantitative vs qualitative
  • The four levels of data

The first thing to pay attention to is my use of the word data. In the last chapter, I defined data as merely being a collection of information. This vague definition exists because we may separate data into different categories and need our definition to be loose.

The next thing to remember while we go through this chapter is that for the most part, when I talk about what type of data this is, I will refer to either a specific characteristic of a dataset or to the entire dataset as a...

Why look at these distinctions?

It might seem worthless to stop and think about what type of data we have before getting into the fun stuff, like statistics and machine learning, but this is arguably one of the most important steps you need to take to perform data science.

Consider an example where we are looking at election results for a county. In the dataset of people, there is a "race" column that is denoted via an identifying number to save space. For example perhaps caucasian is denoted by 7 while Asian American is 2. Without understanding that these numbers are not actually ordered numbers like we think about them (where 7 is greater than 2 and therefore caucasian is "greater than" Asian American) we will make terrible mistakes in our analysis.Discuss

The same principle applies to data science. When given a dataset, it is tempting to jump right into exploring, applying statistical models, and researching the applications of machine learning in order to get results...

Structured versus unstructured data

The distinction between structured and unstructured data is usually the first question you want to ask yourself about the entire dataset. The answer to this question can mean the difference between needing three days or three weeks of time to perform a proper analysis.

The basic breakdown is as follows (this is a rehashed definition of organized and unorganized data in the first chapter):

  • Structured (organized) data: This is data that can be thought of as observations and characteristics. It is usually organized using a table method (rows and columns).
  • Unstructured (unorganized) data: This data exists as a free entity and does not follow any standard organization hierarchy.

Here are a few examples that could help you differentiate between the two:

  • Most data that exists in text form, including server logs and Facebook posts, is unstructured
  • Scientific observations, as recorded by careful scientists, are kept in a very neat and organized (structured) format
  • A...

Quantitative versus qualitative data

When you ask a data scientist, "what type of data is this?", they will usually assume that you are asking them whether or not it is mostly quantitative or qualitative. It is likely the most common way of describing the specific characteristics of a dataset.

For the most part, when talking about quantitative data, you are usually (not always) talking about a structured dataset with a strict row/column structure (because we don't assume unstructured data even has any characteristics). All the more reason why the preprocessing step is so important.

These two data types can be defined as follows:

  • Quantitative data: This data can be described using numbers, and basic mathematical procedures, including addition, are possible on the set.
  • Qualitative data: This data cannot be described using numbers and basic mathematics. This data is generally thought of as being described using "natural" categories and language.

Example – coffee...

The road thus far…

So far in this chapter, we have looked at the differences between structured and unstructured data as well as between qualitative and quantitative characteristics. These two simple distinctions can have drastic effects on the analysis that is performed. Allow me to summarize before moving on the second half of the chapter.

Data as a whole can either be structured or unstructured, meaning that the data can either take on an organized row/column structure with distinct features that describe each row of the dataset, or exist in a free-form state that usually must be preprocessed into a form that is easily digestible.

If data is structured, we can look at each column (feature) of the dataset as being either quantitative or qualitative. Basically, can the column be described using mathematics and numbers or not? The next part of this chapter will break down data into four very specific and detailed levels. At each order, we will apply more complicated rules of mathematics...

Flavors of data


In the field, it is important to understand the different flavors of data for several reasons. Not only will the type of data dictate the methods used to analyze and extract results, knowing whether the data is unstructured or perhaps quantitative can also tell you a lot about the real-world phenomenon being measured.

We will look at the three basic classifications of data:

  • Structured vs unstructured (sometimes called organized vs unorganized)

  • Quantitative vs qualitative

  • The four levels of data

The first thing to pay attention to is my use of the word data. In the last chapter, I defined data as merely being a collection of information. This vague definition exists because we may separate data into different categories and need our definition to be loose.

The next thing to remember while we go through this chapter is that for the most part, when I talk about what type of data this is, I will refer to either a specific characteristic of a dataset or to the entire dataset as a whole...

Why look at these distinctions?


It might seem worthless to stop and think about what type of data we have before getting into the fun stuff, like statistics and machine learning, but this is arguably one of the most important steps you need to take to perform data science.

Consider an example where we are looking at election results for a county. In the dataset of people, there is a "race" column that is denoted via an identifying number to save space. For example perhaps caucasian is denoted by 7 while Asian American is 2. Without understanding that these numbers are not actually ordered numbers like we think about them (where 7 is greater than 2 and therefore caucasian is "greater than" Asian American) we will make terrible mistakes in our analysis.Discuss

The same principle applies to data science. When given a dataset, it is tempting to jump right into exploring, applying statistical models, and researching the applications of machine learning in order to get results faster. However, if...

Structured versus unstructured data


The distinction between structured and unstructured data is usually the first question you want to ask yourself about the entire dataset. The answer to this question can mean the difference between needing three days or three weeks of time to perform a proper analysis.

The basic breakdown is as follows (this is a rehashed definition of organized and unorganized data in the first chapter):

  • Structured (organized) data: This is data that can be thought of as observations and characteristics. It is usually organized using a table method (rows and columns).

  • Unstructured (unorganized) data: This data exists as a free entity and does not follow any standard organization hierarchy.

Here are a few examples that could help you differentiate between the two:

  • Most data that exists in text form, including server logs and Facebook posts, is unstructured

  • Scientific observations, as recorded by careful scientists, are kept in a very neat and organized (structured) format

  • A genetic...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Enhance your knowledge of coding with data science theory for practical insight into data science and analysis
  • More than just a math class, learn how to perform real-world data science tasks with R and Python
  • Create actionable insights and transform raw data into tangible value

Description

Need to turn your skills at programming into effective data science skills? Principles of Data Science is created to help you join the dots between mathematics, programming, and business analysis. With this book, you’ll feel confident about asking—and answering—complex and sophisticated questions of your data to move from abstract and raw statistics to actionable ideas. With a unique approach that bridges the gap between mathematics and computer science, this books takes you through the entire data science pipeline. Beginning with cleaning and preparing data, and effective data mining strategies and techniques, you’ll move on to build a comprehensive picture of how every piece of the data science puzzle fits together. Learn the fundamentals of computational mathematics and statistics, as well as some pseudocode being used today by data scientists and analysts. You’ll get to grips with machine learning, discover the statistical models that help you take control and navigate even the densest datasets, and find out how to create powerful visualizations that communicate what your data means.

Who is this book for?

You should be fairly well acquainted with basic algebra and should feel comfortable reading snippets of R/Python as well as pseudo code. You should have the urge to learn and apply the techniques put forth in this book on either your own data sets or those provided to you. If you have the basic math skills but want to apply them in data science or you have good programming skills but lack math, then this book is for you.

What you will learn

  • Get to know the five most important steps of data science
  • Use your data intelligently and learn how to handle it with care
  • Bridge the gap between mathematics and programming
  • Learn about probability, calculus, and how to use statistical models to control and clean your data and drive actionable results
  • Build and evaluate baseline machine learning models
  • Explore the most effective metrics to determine the success of your machine learning models
  • Create data visualizations that communicate actionable insights
  • Read and apply machine learning concepts to your problems and make actual predictions
Estimated delivery fee Deliver to Luxembourg

Premium delivery 7 - 10 business days

€17.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Dec 16, 2016
Length: 388 pages
Edition : 1st
Language : English
ISBN-13 : 9781785887918
Category :
Languages :
Concepts :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to Luxembourg

Premium delivery 7 - 10 business days

€17.95
(Includes tracking information)

Product Details

Publication date : Dec 16, 2016
Length: 388 pages
Edition : 1st
Language : English
ISBN-13 : 9781785887918
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 117.97
Practical Machine Learning
€38.99
Principles of Data Science
€36.99
Practical Business Intelligence
€41.99
Total 117.97 Stars icon
Banner background image

Table of Contents

14 Chapters
1. How to Sound Like a Data Scientist Chevron down icon Chevron up icon
2. Types of Data Chevron down icon Chevron up icon
3. The Five Steps of Data Science Chevron down icon Chevron up icon
4. Basic Mathematics Chevron down icon Chevron up icon
5. Impossible or Improbable – A Gentle Introduction to Probability Chevron down icon Chevron up icon
6. Advanced Probability Chevron down icon Chevron up icon
7. Basic Statistics Chevron down icon Chevron up icon
8. Advanced Statistics Chevron down icon Chevron up icon
9. Communicating Data Chevron down icon Chevron up icon
10. How to Tell If Your Toaster Is Learning – Machine Learning Essentials Chevron down icon Chevron up icon
11. Predictions Don't Grow on Trees – or Do They? Chevron down icon Chevron up icon
12. Beyond the Essentials Chevron down icon Chevron up icon
13. Case Studies Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.9
(8 Ratings)
5 star 62.5%
4 star 12.5%
3 star 0%
2 star 0%
1 star 25%
Filter icon Filter
Top Reviews

Filter reviews by




Amazon Customer Jan 06, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I was lucky to attend classroom Data Science course with Sinan Ozdemir. Sinan is very good at explain really complex mathematical concepts in a very approachable and everyday terms. This really helps people like myself who aren't in touch with theoretical mathematics. This book is written in the same tone that Sinan delivers lectures and that is very valuable in absorbing the complex concepts delivered in this book. The examples and datasets are carefully chosen to deliver specific concepts provide reference for future use. I would recommend this book to anybody with or without formal training in statistics but would like to pick up on the breadth of Data Science. I would also recommend this book to Data Science instructors as an ideal for organization and flow of training on Data Science. This book is the best Data Science book on the market that can introduce you to the world of Data Science and prepare you for interviews.
Amazon Verified review Amazon
Dr Rashmi Yogendra Dhote Jul 09, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The quality of the product I ordered is up to the mark
Amazon Verified review Amazon
willmidwest Jan 19, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Preparing to enter an advanced degree program. This book is Foundational to beginning that journey!
Amazon Verified review Amazon
Suresh Deshpande Sep 20, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Wonderful big with simple explanation
Amazon Verified review Amazon
Amazon Customer Aug 05, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Author really has grip on mathematical tools applied for data analytics. Good books for folks like me who did not consider mathematics seriously in engineering
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact [email protected] with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at [email protected] using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on [email protected] with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on [email protected] within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on [email protected] who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on [email protected] within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela