Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Reinforcement Learning Projects

You're reading from   Python Reinforcement Learning Projects Eight hands-on projects exploring reinforcement learning algorithms using TensorFlow

Arrow left icon
Product type Paperback
Published in Sep 2018
Publisher Packt
ISBN-13 9781788991612
Length 296 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Sean Saito Sean Saito
Author Profile Icon Sean Saito
Sean Saito
Rajalingappaa Shanmugamani Rajalingappaa Shanmugamani
Author Profile Icon Rajalingappaa Shanmugamani
Rajalingappaa Shanmugamani
Yang Wenzhuo Yang Wenzhuo
Author Profile Icon Yang Wenzhuo
Yang Wenzhuo
Arrow right icon
View More author details
Toc

Simulating Control Tasks

In the previous chapter, we saw the notable success of deep Q-learning (DQN) in training an AI agent to play Atari games. One limitation of DQN is that the action space must be discrete, namely, only a finite number of actions are available for the agent to select and the total number of actions cannot be too large. However, many practical tasks require continuous actions, which makes DQN difficult to apply. A naive remedy for DQN in this case is discretizing the continuous action space. But this remedy doesn't work due to the curse of dimensionality, meaning that DQN quickly becomes infeasible and does not generalize well.

This chapter will discuss deep reinforcement learning algorithms for control tasks with a continuous action space. Several classic control tasks, such as CartPole, Pendulum, and Acrobot, will be introduced first. You will...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image