Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Reinforcement Learning Hands-On

You're reading from   Deep Reinforcement Learning Hands-On A practical and easy-to-follow guide to RL from Q-learning and DQNs to PPO and RLHF

Arrow left icon
Product type Paperback
Published in Nov 2024
Publisher Packt
ISBN-13 9781835882702
Length 716 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Maxim Lapan Maxim Lapan
Author Profile Icon Maxim Lapan
Maxim Lapan
Arrow right icon
View More author details
Toc

Table of Contents (29) Chapters Close

Preface 1. Part 1 Introduction to RL
2. What Is Reinforcement Learning? FREE CHAPTER 3. OpenAI Gym API and Gymnasium 4. Deep Learning with PyTorch 5. The Cross-Entropy Method 6. Part 2 Value-based methods
7. Tabular Learning and the Bellman Equation 8. Deep Q-Networks 9. Higher-Level RL Libraries 10. DQN Extensions 11. Ways to Speed Up RL 12. Stocks Trading Using RL 13. Part 3 Policy-based methods
14. Policy Gradients 15. Actor-Critic Method: A2C and A3C 16. The TextWorld Environment 17. Web Navigation 18. Part 4 Advanced RL
19. Continous Action Space 20. Trust Region Methods 21. Black-Box Optimizations in RL 22. Advanced Exploration 23. Reinforcement Learning with Human Feedback 24. AlphaGo Zero and MuZero 25. RL in Discrete Optimization 26. Multi-Agent RL 27. Bibliography
28. Index

REINFORCE issues

In the previous section, we discussed the REINFORCE method, which is a natural extension of the cross-entropy method. Unfortunately, both REINFORCE and the cross-entropy method still suffer from several problems, which make both of them limited to simple environments.

Full episodes are required

First of all, we still need to wait for the full episode to complete before we can start training. Even worse, both REINFORCE and the cross-entropy method behave better with more episodes used for training (just because more episodes means more training data, which means more accurate policy gradients). This situation is fine for short episodes in the CartPole, when in the beginning, we can barely handle the bar for more than 10 steps; but in Pong, it is completely different: every episode can last for hundreds or even thousands of frames. It’s equally bad from the training perspective, as our training batch becomes very large, and from the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image