Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Gradient Boosting with XGBoost and scikit-learn

You're reading from   Hands-On Gradient Boosting with XGBoost and scikit-learn Perform accessible machine learning and extreme gradient boosting with Python

Arrow left icon
Product type Paperback
Published in Oct 2020
Publisher Packt
ISBN-13 9781839218354
Length 310 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Corey Wade Corey Wade
Author Profile Icon Corey Wade
Corey Wade
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Bagging and Boosting
2. Chapter 1: Machine Learning Landscape FREE CHAPTER 3. Chapter 2: Decision Trees in Depth 4. Chapter 3: Bagging with Random Forests 5. Chapter 4: From Gradient Boosting to XGBoost 6. Section 2: XGBoost
7. Chapter 5: XGBoost Unveiled 8. Chapter 6: XGBoost Hyperparameters 9. Chapter 7: Discovering Exoplanets with XGBoost 10. Section 3: Advanced XGBoost
11. Chapter 8: XGBoost Alternative Base Learners 12. Chapter 9: XGBoost Kaggle Masters 13. Chapter 10: XGBoost Model Deployment 14. Other Books You May Enjoy

Chapter 1: Machine Learning Landscape

Welcome to Hands-On Gradient Boosting with XGBoost and Scikit-Learn, a book that will teach you the foundations, tips, and tricks of XGBoost, the best machine learning algorithm for making predictions from tabular data.

The focus of this book is XGBoost, also known as Extreme Gradient Boosting. The structure, function, and raw power of XGBoost will be fleshed out in increasing detail in each chapter. The chapters unfold to tell an incredible story: the story of XGBoost. By the end of this book, you will be an expert in leveraging XGBoost to make predictions from real data.

In the first chapter, XGBoost is presented in a sneak preview. It makes a guest appearance in the larger context of machine learning regression and classification to set the stage for what's to come. 

This chapter focuses on preparing data for machine learning, a process also known as data wrangling. In addition to building machine learning models, you will learn about using efficient Python code to load data, describe data, handle null values, transform data into numerical columns, split data into training and test sets, build machine learning models, and implement cross-validation, as well as comparing linear regression and logistic regression models with XGBoost.

The concepts and libraries presented in this chapter are used throughout the book.

This chapter consists of the following topics:

  • Previewing XGBoost

  • Wrangling data

  • Predicting regression

  • Predicting classification

You have been reading a chapter from
Hands-On Gradient Boosting with XGBoost and scikit-learn
Published in: Oct 2020
Publisher: Packt
ISBN-13: 9781839218354
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image