Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
 Learning Geospatial Analysis with Python

You're reading from   Learning Geospatial Analysis with Python Unleash the power of Python 3 with practical techniques for learning GIS and remote sensing

Arrow left icon
Product type Paperback
Published in Nov 2023
Publisher Packt
ISBN-13 9781837639175
Length 432 pages
Edition 4th Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Joel Lawhead Joel Lawhead
Author Profile Icon Joel Lawhead
Joel Lawhead
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1:The History and the Present of the Industry
2. Chapter 1: Learning about Geospatial Analysis with Python FREE CHAPTER 3. Chapter 2: Learning about Geospatial Data 4. Chapter 3: The Geospatial Technology Landscape 5. Part 2:Geospatial Analysis Concepts
6. Chapter 4: Geospatial Python Toolbox 7. Chapter 5: Python and Geospatial Algorithms 8. Chapter 6: Creating and Editing GIS Data 9. Chapter 7: Python and Remote Sensing 10. Chapter 8: Python and Elevation Data 11. Part 3:Practical Geospatial Processing Techniques
12. Chapter 9: Advanced Geospatial Modeling 13. Chapter 10: Working with Real-Time Data 14. Chapter 11: Putting It All Together 15. Assessments 16. Index 17. Other Books You May Enjoy

GDAL

GDAL is the dominant geospatial library for raster data. Its raster capability is so significant that it is a part of virtually every geospatial toolkit in any language, and Python is no exception to this. To see the basics of how GDAL works in Python, download the following example raster satellite image as a ZIP file and unzip it: https://github.com/GeospatialPython/Learn/raw/master/SatImage.zip. Let’s open this image and see how many bands it has and how many pixels are present along each axis:

from osgeo import gdal
raster = gdal.Open("SatImage.tif")
raster.RasterCount 3
raster.RasterXSize 2592
raster.RasterYSize 2693

GDAL is an extremely fast geospatial raster reader and writer within Python. It can also reproject images quite well in addition to being able to do a few other tricks. However, the true value of GDAL comes from its interaction with the next Python module, which we’ll examine now.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image