Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Predictive Analytics with R

You're reading from   Mastering Predictive Analytics with R Master the craft of predictive modeling by developing strategy, intuition, and a solid foundation in essential concepts

Arrow left icon
Product type Paperback
Published in Jun 2015
Publisher
ISBN-13 9781783982806
Length 414 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Table of Contents (13) Chapters Close

Preface 1. Gearing Up for Predictive Modeling 2. Linear Regression FREE CHAPTER 3. Logistic Regression 4. Neural Networks 5. Support Vector Machines 6. Tree-based Methods 7. Ensemble Methods 8. Probabilistic Graphical Models 9. Time Series Analysis 10. Topic Modeling 11. Recommendation Systems Index

Summary


This chapter was devoted to learning about topic models and after sentiment analysis on movie reviews, this was our second foray into working with real-life text data. This time, our predictive task was classifying the topics of news articles on the Web. The primary technique for topic modeling on which we focused was Latent Dirichlet Allocation (LDA). This derives its name from the fact that it assumes that the topic and word distributions that can be found inside a document arise from hidden multinomial distributions that are sampled from Dirichlet priors. We saw that the generative process of sampling words and topics from these multinomial distributions mirrors many of the natural intuitions that we have about this domain; however, it notably fails to account for correlations between the various topics that can co-occur inside a document.

In our experiments with LDA, we saw that there is more than one way to fit an LDA model, and in particular we saw that a method known as Gibbs...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image