Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Predictive Analytics with R

You're reading from   Mastering Predictive Analytics with R Master the craft of predictive modeling by developing strategy, intuition, and a solid foundation in essential concepts

Arrow left icon
Product type Paperback
Published in Jun 2015
Publisher
ISBN-13 9781783982806
Length 414 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Table of Contents (13) Chapters Close

Preface 1. Gearing Up for Predictive Modeling 2. Linear Regression FREE CHAPTER 3. Logistic Regression 4. Neural Networks 5. Support Vector Machines 6. Tree-based Methods 7. Ensemble Methods 8. Probabilistic Graphical Models 9. Time Series Analysis 10. Topic Modeling 11. Recommendation Systems Index

Predicting class membership on synthetic 2D data


Our first example showcasing tree-based methods in R will operate on a synthetic data set that we have created. The data set can be generated using commands in the companion R file for this chapter, available from the publisher. The data consists of 287 observations of two input features, x1 and x2.

The output variable is a categorical variable with three possible classes: a, b, and c. If we follow the commands in the code file, we will end up with a data frame in R, mcdf:

> head(mcdf, n = 5)
          x1       x2 class
1 18.58213 12.03106     a
2 22.09922 12.36358     a
3 11.78412 12.75122     a
4 23.41888 13.89088     a
5 16.37667 10.32308     a

This problem is actually very simple because on the one hand, we have a very small data set with only two features, and on the other because the classes happen to be quite well separated in the feature space, something that is very rare. Nonetheless, our objective in this section is to demonstrate...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image