Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Numpy Beginner's Guide (Update)

You're reading from   Numpy Beginner's Guide (Update) Build efficient, high-speed programs using the high-performance NumPy mathematical library

Arrow left icon
Product type Paperback
Published in Jun 2015
Publisher
ISBN-13 9781785281969
Length 348 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. NumPy Quick Start 2. Beginning with NumPy Fundamentals FREE CHAPTER 3. Getting Familiar with Commonly Used Functions 4. Convenience Functions for Your Convenience 5. Working with Matrices and ufuncs 6. Moving Further with NumPy Modules 7. Peeking into Special Routines 8. Assuring Quality with Testing 9. Plotting with matplotlib 10. When NumPy Is Not Enough – SciPy and Beyond 11. Playing with Pygame A. Pop Quiz Answers B. Additional Online Resources C. NumPy Functions' References
Index

Time for action – drawing the lognormal distribution

Let's visualize the lognormal distribution and its PDF with a histogram:

  1. Generate random numbers using the normal() function from the random NumPy module:
    N=10000
    lognormal_values = np.random.lognormal(size=N)
  2. Draw the histogram and theoretical PDF with a center value of 0 and standard deviation of 1:
    _, bins, _ = plt.hist(lognormal_values, np.sqrt(N), normed=True, lw=1)
    sigma = 1
    mu = 0
    x = np.linspace(min(bins), max(bins), len(bins))
    pdf = np.exp(-(numpy.log(x) - mu)**2 / (2 * sigma**2))/ (x * sigma * np.sqrt(2 * np.pi))
    plt.plot(x, pdf,lw=3)
    plt.show()

    The fit of the histogram and theoretical PDF is excellent, as you can see in the following diagram:

    Time for action – drawing the lognormal distribution

What just happened?

We visualized the lognormal distribution using the lognormal() function from the random NumPy module. We did this by drawing the curve of the theoretical PDF and a histogram of randomly generated values (see lognormaldist.py):

import numpy as np
import matplotlib...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image