Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
OpenCV 3.x with Python By Example

You're reading from   OpenCV 3.x with Python By Example Make the most of OpenCV and Python to build applications for object recognition and augmented reality

Arrow left icon
Product type Paperback
Published in Jan 2018
Publisher Packt
ISBN-13 9781788396905
Length 268 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Gabriel Garrido Calvo Gabriel Garrido Calvo
Author Profile Icon Gabriel Garrido Calvo
Gabriel Garrido Calvo
Prateek Joshi Prateek Joshi
Author Profile Icon Prateek Joshi
Prateek Joshi
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Title Page
Copyright and Credits
Contributors
Packt Upsell
Preface
1. Applying Geometric Transformations to Images FREE CHAPTER 2. Detecting Edges and Applying Image Filters 3. Cartoonizing an Image 4. Detecting and Tracking Different Body Parts 5. Extracting Features from an Image 6. Seam Carving 7. Detecting Shapes and Segmenting an Image 8. Object Tracking 9. Object Recognition 10. Augmented Reality 11. Machine Learning by an Artificial Neural Network 1. Other Books You May Enjoy

How to define multi-layer perceptrons (MLP)


MLP is a branch of ANNs widely used in pattern recognition because of its ability of identify patterns within noisy or unexpected environments. MLP can be used to implement supervised and unsupervised learning (both of them were discussed Chapter 9, Object Recognition). In addition to that, MLP can also be used to implement another kind of learning such as reinforcement learning inspired by behavioral psychology, where the network learning is adjusted using reward/punishment actions.

Defining an ANN-MLP consist of deciding the structure of the layers that will compose our net, and how many nodes will be in each of them. Firstly, we need to decide what the goal of our network is. For instance, we could implement an object recognizer, in which case, the number of nodes belonging to the output layer will be the same as the number of different objects we want to identify. Simulating the example from Chapter 9, Object Recognition, in the case of recognizing...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image