Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Geospatial Development - Second Edition

You're reading from   Python Geospatial Development - Second Edition If you're experienced in Python here's an opportunity to get deep into Geospatial development, linking data to global locations. No prior knowledge required ‚Äì this book takes you through it all, step by step.

Arrow left icon
Product type Paperback
Published in May 2013
Publisher Packt
ISBN-13 9781782161523
Length 508 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Erik Westra Erik Westra
Author Profile Icon Erik Westra
Erik Westra
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Python Geospatial Development
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Geospatial Development Using Python 2. GIS FREE CHAPTER 3. Python Libraries for Geospatial Development 4. Sources of Geospatial Data 5. Working with Geospatial Data in Python 6. GIS in the Database 7. Working with Spatial Data 8. Using Python and Mapnik to Generate Maps 9. Putting It All Together – a Complete Mapping System 10. ShapeEditor – Implementing List View, Import, and Export 11. ShapeEditor – Selecting and Editing Features Index

Geospatial development


The term "geospatial" refers to information that is located on the earth's surface using coordinates. This can include, for example, the position of a cell phone tower, the shape of a road, or the outline of a country:

Geospatial data often associates some piece of information with a particular location. For example, the following is an interactive map from the http://www.bbc.co.uk/ website, showing the percentage of people in each country with access to the Internet in 2008:

Geospatial development is the process of writing computer programs that can access, manipulate, and display this type of information.

Internally, geospatial data is represented as a series of coordinates, often in the form of latitude and longitude values. Additional attributes such as temperature, soil type, height, or the name of a landmark are also often present. There can be many thousands (or even millions) of data points for a single set of geospatial data. For example, the following outline of New Zealand consists of almost 12,000 individual data points:

Because so much data is involved, it is common to store geospatial information within a database. A large part of this book will be concerned with how to store your geospatial information in a database, and how to access it efficiently.

Geospatial data comes in many different forms. Different Geographical Information System (GIS) vendors have produced their own file formats over the years, and various organizations have also defined their own standards. It is often necessary to use a Python library to read files in the correct format when importing geospatial data into your database.

Unfortunately, not all geospatial data points are compatible. Just like a distance value of 2.8 can have a very different meaning depending on whether you are using kilometers or miles, a given latitude and longitude value can represent any number of different points on the earth's surface, depending on which projection has been used.

A projection is a way of representing the curved surface of the earth in two dimensions. We will look at projections in more detail in Chapter 2, GIS, but for now just keep in mind that every piece of geospatial data has a projection associated with it. To compare or combine two sets of geospatial data, it is often necessary to convert the data from one projection to another.

Note

Latitude and longitude values are sometimes referred to as unprojected coordinates. We'll learn more about this in the next chapter.

In addition to the prosaic tasks of importing geospatial data from various external file formats and translating data from one projection to another, geospatial data can also be manipulated to solve various interesting problems. Obvious examples include the task of calculating the distance between two points, or calculating the length of a road, or finding all data points within a given radius of a selected point. We will be using Python libraries to solve all of these problems, and more.

Finally, geospatial data by itself is not very interesting. A long list of coordinates tells you almost nothing; it isn't until those numbers are used to draw a picture that you can make sense of it. Drawing maps, placing data points onto a map, and allowing users to interact with maps are all important aspects of geospatial development. We will be looking at all of these in later chapters.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image