Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Deep Learning with Keras Workshop

You're reading from   The Deep Learning with Keras Workshop Learn how to define and train neural network models with just a few lines of code

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781800562967
Length 496 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Matthew Moocarme Matthew Moocarme
Author Profile Icon Matthew Moocarme
Matthew Moocarme
Mahla Abdolahnejad Mahla Abdolahnejad
Author Profile Icon Mahla Abdolahnejad
Mahla Abdolahnejad
Ritesh Bhagwat Ritesh Bhagwat
Author Profile Icon Ritesh Bhagwat
Ritesh Bhagwat
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface
1. Introduction to Machine Learning with Keras 2. Machine Learning versus Deep Learning FREE CHAPTER 3. Deep Learning with Keras 4. Evaluating Your Model with Cross-Validation Using Keras Wrappers 5. Improving Model Accuracy 6. Model Evaluation 7. Computer Vision with Convolutional Neural Networks 8. Transfer Learning and Pre-Trained Models 9. Sequential Modeling with Recurrent Neural Networks Appendix

Regularization

Since deep neural networks are highly flexible models, overfitting is an issue that can often arise when training them. Therefore, one very important part of becoming a deep learning expert is knowing how to detect overfitting, and subsequently how to address the overfitting problem in your model. Overfitting in your models will be clear if your model performs excellently on the training data but performs poorly on new, unseen data.

For example, if you build a model to classify images of dogs and cats into their respective classes and your image classifier performs with high accuracy during the training process but does not perform well on new examples, then this is an indication that your model has overfitted the training data. Regularization techniques are an important group of methods specifically aimed at reducing overfitting in machine learning models.

Understanding regularization techniques thoroughly and being able to apply them to your deep neural networks...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image