Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning Bayesian Models with R

You're reading from   Learning Bayesian Models with R Become an expert in Bayesian Machine Learning methods using R and apply them to solve real-world big data problems

Arrow left icon
Product type Paperback
Published in Oct 2015
Publisher Packt
ISBN-13 9781783987603
Length 168 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Hari Manassery Koduvely Hari Manassery Koduvely
Author Profile Icon Hari Manassery Koduvely
Hari Manassery Koduvely
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Introducing the Probability Theory FREE CHAPTER 2. The R Environment 3. Introducing Bayesian Inference 4. Machine Learning Using Bayesian Inference 5. Bayesian Regression Models 6. Bayesian Classification Models 7. Bayesian Models for Unsupervised Learning 8. Bayesian Neural Networks 9. Bayesian Modeling at Big Data Scale Index

Bayesian treatment of neural networks


To set the neural network learning in a Bayesian context, consider the error function for the regression case. It can be treated as a Gaussian noise term for observing the given dataset conditioned on the weights w. This is precisely the likelihood function that can be written as follows:

Here, is the variance of the noise term given by and represents a probabilistic model. The regularization term can be considered as the log of the prior probability distribution over the parameters:

Here, is the variance of the prior distribution of weights. It can be easily shown using Bayes' theorem that the objective function M(w) then corresponds to the posterior distribution of parameters w:

In the neural network case, we are interested in the local maxima of . The posterior is then approximated as a Gaussian around each maxima , as follows:

Here, A is a matrix of the second derivative of M(w) with respect to w and represents an inverse of the covariance matrix...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image