Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Dancing with Python

You're reading from   Dancing with Python Learn to code with Python and Quantum Computing

Arrow left icon
Product type Paperback
Published in Aug 2021
Publisher Packt
ISBN-13 9781801077859
Length 744 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Robert S. Sutor Robert S. Sutor
Author Profile Icon Robert S. Sutor
Robert S. Sutor
Arrow right icon
View More author details
Toc

Table of Contents (29) Chapters Close

Preface 1. Chapter 1: Doing the Things That Coders Do FREE CHAPTER 2. Part I: Getting to Know Python
3. Chapter 2: Working with Expressions 4. Chapter 3: Collecting Things Together 5. Chapter 4: Stringing You Along 6. Chapter 5: Computing and Calculating 7. Chapter 6: Defining and Using Functions 8. Chapter 7: Organizing Objects into Classes 9. Chapter 8: Working with Files 10. PART II: Algorithms and Circuits
11. Chapter 9: Understanding Gates and Circuits 12. Chapter 10: Optimizing and Testing Your Code 13. Chapter 11: Searching for the Quantum Improvement 14. PART III: Advanced Features and Libraries
15. Chapter 12: Searching and Changing Text 16. Chapter 13: Creating Plots and Charts 17. Chapter 14: Analyzing Data 18. Chapter 15: Learning, Briefly 19. References
20. Other Books You May Enjoy
21. Index
Appendices
1. Appendix A: Tools 2. Appendix B: Staying Current 3. Appendix C: The Complete UniPoly Class
4. Appendix D: The Complete Guitar Class Hierarchy
5. Appendix E: Notices 6. Appendix F: Production Notes

Preface

Skill is the unified force of experience, intellect and passion in their operation.

—John Ruskin

Coding is the art and engineering of creating software. Code is the collection of written instructions and functionality in one or more programming languages that provides directions for how computing hardware should operate. A coder creates code.

Coders go by other names as well. They are often called software developers or just developers. More traditionally, they have been called programmers.

The range of hardware devices that need code to tell them what to do is astounding. Cars have many computer processors in them to control how they operate and how to entertain you. As you can imagine, a vehicle with any degree of self-driving capability contains a lot of code. It’s not simple programming either: artificial intelligence (AI) software makes many operating decisions.

Your mobile phone is both a computing and a communication device. Low-level code controls how your phone connects to Wi-Fi or cellular networks. Someone wrote that code, but as an app developer, you don’t need to redo it; you call functions that access the Internet. Similarly, someone wrote the low-level graphics routines that put the color dots on the screen in the right places. While you may want to do that in some cases as an app developer, you mostly call higher-level functions that draw lines or shapes, show photos, or play videos.

Even at this level, several kinds of hardware get involved within your phone. There is the communications chip, general processor, arithmetic processor, floating-point processor, and the graphics processing unit (GPU). These are what we call classical computers or classical processors. Their architecture is descended from computers of the 1940s. While there is a range of ways of programming them, it is all called classical coding.

However, there is another kind of computer that has only been available on the cloud for general users since 2016. That is the quantum computer. Coding a quantum computer is radically different from classical device programming at the level close to the hardware. However, if you know or can learn Python, a programming language estimated to be used by over 8 million software developers globally and taught in many universities, you have a tremendous advantage in that you can do both classical and quantum computing together.

Classical hardware and software have proven themselves over the last seven decades, while quantum computing is new. It promises to help solve some kinds of problems that would take too much time, too much processing power, or too much memory, even for a classical supercomputer. Experts expect quantum computing to be useful in the future in areas including financial services, logistics, chemistry, materials science, drug discovery, scientific simulation of physical systems, optimization, and artificial intelligence.

If you plan to be a professional software developer or someone who needs high-performance computing for research, you should learn about quantum computing systems and how to code for them.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image