Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning in Biotechnology and Life Sciences

You're reading from   Machine Learning in Biotechnology and Life Sciences Build machine learning models using Python and deploy them on the cloud

Arrow left icon
Product type Paperback
Published in Jan 2022
Publisher Packt
ISBN-13 9781801811910
Length 408 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Saleh Alkhalifa Saleh Alkhalifa
Author Profile Icon Saleh Alkhalifa
Saleh Alkhalifa
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: Getting Started with Data
2. Chapter 1: Introducing Machine Learning for Biotechnology FREE CHAPTER 3. Chapter 2: Introducing Python and the Command Line 4. Chapter 3: Getting Started with SQL and Relational Databases 5. Chapter 4: Visualizing Data with Python 6. Section 2: Developing and Training Models
7. Chapter 5: Understanding Machine Learning 8. Chapter 6: Unsupervised Machine Learning 9. Chapter 7: Supervised Machine Learning 10. Chapter 8: Understanding Deep Learning 11. Chapter 9: Natural Language Processing 12. Chapter 10: Exploring Time Series Analysis 13. Section 3: Deploying Models to Users
14. Chapter 11: Deploying Models with Flask Applications 15. Chapter 12: Deploying Applications to the Cloud 16. Other Books You May Enjoy

Chapter 1: Introducing Machine Learning for Biotechnology

How do I get started? This is a question that I have received far too frequently over my last few years as a data scientist and consultant operating in the technology/biotechnology sectors, and the answer to this question never really seemed to change from person to person. My recommendation was generally along the lines of learning Python and data science through online courses and following a few tutorials to get a sense of how things worked. What I found was that the vast majority of scientists and engineers that I have encountered, who are interested in learning data science, tend to get overwhelmed by the large volume of resources and documentation available on the internet. From Getting Started in Python courses to Comprehensive Machine Learning guides, the vast majority of those who ask the question How do I get started? often find themselves confused and demotivated just a few days into their journey. This is especially true for scientists or researchers in the lab who do not usually interact with code, algorithms, or predictive models. Using the Terminal command line for the first time can be unusual, uncomfortable, and – to a certain extent – terrifying to a new user.

This book exists to address this problem. This is a one-stop shop to give scientists, engineers, and everyone in-between a fast and efficient guide to getting started in the beautiful field of data science. If you are not a coder and do not intend to be, you have the option to read this book from cover to cover without ever using Python or any of the hands-on resources. You will still manage to walk away with a strong foundation and understanding of machine learning and its useful capabilities, and what it can bring to the table within your team. If you are a coder, you have the option to follow along on your personal computer and complete all the tutorials we will cover. All of the code within this book is inclusive, connected, and designed to be fully replicable on your device. In addition, all of the code in this book and its associated tutorials is available online for your convenience. The tutorials we will complete can be thought of as blueprints to a certain extent, in the sense that they can be recycled and applied to your data. So, depending on what your expectations of the phrase getting started are, you will be able to use this book effectively and efficiently, regardless of your intent to code. So, how do we plan on getting started?

Throughout this book, we will introduce concepts and tutorials that cater to problems and use cases that are commonly experienced in the technology and biotechnology sectors. Unlike many of the courses and tutorials available online, this book is well-connected, condensed, and chronological, thus offering you a fast and efficient way to get up to speed on data science. In under 400 pages, we will introduce the main concepts and ideas relating to Python, SQL, machine learning, deep learning, natural language processing, and time-series analysis. We will cover some popular approaches, best practices, and important information every data scientist should know. In addition to all of this, we will not only put on our data scientist hats to train and develop several powerful predictive models, but we will also put on our data engineer hats and deploy our models to the cloud using Amazon Web Services (AWS) and Google Cloud Platform (GCP). Whether you are planning to bring data science to your current team, train and deploy the models yourself, or start interviewing for data scientist positions, this book will equip you with the right tools and resources to start your new journey, starting with this first chapter. In the following sections, we will cover a few interesting topics to get us started:

  • Understanding the biotechnology field
  • Combining biotechnology and machine learning
  • Exploring machine learning software

With that in mind, let's look at some of the fun areas within the field of biotechnology that are ripe for exploration when it comes to machine learning.

You have been reading a chapter from
Machine Learning in Biotechnology and Life Sciences
Published in: Jan 2022
Publisher: Packt
ISBN-13: 9781801811910
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image