Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Natural Language Processing Workshop

You're reading from   The Natural Language Processing Workshop Confidently design and build your own NLP projects with this easy-to-understand practical guide

Arrow left icon
Product type Paperback
Published in Aug 2020
Publisher Packt
ISBN-13 9781800208421
Length 452 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (6):
Arrow left icon
Sohom Ghosh Sohom Ghosh
Author Profile Icon Sohom Ghosh
Sohom Ghosh
Nipun Sadvilkar Nipun Sadvilkar
Author Profile Icon Nipun Sadvilkar
Nipun Sadvilkar
Rohan Chopra Rohan Chopra
Author Profile Icon Rohan Chopra
Rohan Chopra
Muzaffar Bashir Shah Muzaffar Bashir Shah
Author Profile Icon Muzaffar Bashir Shah
Muzaffar Bashir Shah
Dwight Gunning Dwight Gunning
Author Profile Icon Dwight Gunning
Dwight Gunning
Aniruddha M. Godbole Aniruddha M. Godbole
Author Profile Icon Aniruddha M. Godbole
Aniruddha M. Godbole
+2 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface
1. Introduction to Natural Language Processing 2. Feature Extraction Methods FREE CHAPTER 3. Developing a Text Classifier 4. Collecting Text Data with Web Scraping and APIs 5. Topic Modeling 6. Vector Representation 7. Text Generation and Summarization 8. Sentiment Analysis Appendix

Hierarchical Dirichlet Process (HDP)

HDP is a non-parametric variant of LDA. It is called "non-parametric" since the number of topics is inferred from the data, and this parameter isn't provided by us. This means that this parameter is learned and can increase (that is, it is theoretically unbounded).

The tomotopy HDP implementation can infer between 1 and 32,767 topics. gensim's HDP implementation seems to fix the number of topics at 150 topics. For our purposes, we will be using the tomotopy HDP implementation.

The gensim and the scikit-learn libraries use variational inference, while the tomotopy library uses collapsed Gibbs sampling. When the time required by collapsed Gibbs sampling is not an issue, then it is preferable to use collapsed Gibbs sampling over variational inference. In other cases, we may prefer to use variational inference. For the tomotopy library, the following parameters are used:

iter: This refers to the number of iterations that...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image