Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Automated Machine Learning on AWS

You're reading from   Automated Machine Learning on AWS Fast-track the development of your production-ready machine learning applications the AWS way

Arrow left icon
Product type Paperback
Published in Apr 2022
Publisher Packt
ISBN-13 9781801811828
Length 420 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Trenton Potgieter Trenton Potgieter
Author Profile Icon Trenton Potgieter
Trenton Potgieter
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: Fundamentals of the Automated Machine Learning Process and AutoML on AWS
2. Chapter 1: Getting Started with Automated Machine Learning on AWS FREE CHAPTER 3. Chapter 2: Automating Machine Learning Model Development Using SageMaker Autopilot 4. Chapter 3: Automating Complicated Model Development with AutoGluon 5. Section 2: Automating the Machine Learning Process with Continuous Integration and Continuous Delivery (CI/CD)
6. Chapter 4: Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning 7. Chapter 5: Continuous Deployment of a Production ML Model 8. Section 3: Optimizing a Source Code-Centric Approach to Automated Machine Learning
9. Chapter 6: Automating the Machine Learning Process Using AWS Step Functions 10. Chapter 7: Building the ML Workflow Using AWS Step Functions 11. Section 4: Optimizing a Data-Centric Approach to Automated Machine Learning
12. Chapter 8: Automating the Machine Learning Process Using Apache Airflow 13. Chapter 9: Building the ML Workflow Using Amazon Managed Workflows for Apache Airflow 14. Section 5: Automating the End-to-End Production Application on AWS
15. Chapter 10: An Introduction to the Machine Learning Software Development Life Cycle (MLSDLC) 16. Chapter 11: Continuous Integration, Deployment, and Training for the MLSDLC 17. Other Books You May Enjoy

Chapter 5: Continuous Deployment of a Production ML Model

In Chapter 4, Continuous Integration and Continuous Delivery (CI/CD) for Machine Learning, we were introduced to the concept of continuous integration, and continuous deployment, as a means of bridging the gap between ML model development and ML model deployment. We were also introduced to the AWS CDK, as a way to further close this gap, by bringing the different artifacts that software engineers and ML practitioners develop into a single cloud-native application. Thus, allowing us to codify a CI/CD pipeline that automates the entirety of the ML process. Closing this gap, and helping to facilitate this inter-team synergy, is one of the core design philosophies behind why AWS originally created the CDK.

Note

For more information on the AWS CDK philosophy, you can read the best practices for developing cloud applications in the AWS CDK blog post (https://aws.amazon.com/blogs/devops/best-practices-for-developing-cloud-applications...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image