This chapter provides a concise explanation of the basic terminology and concepts in reinforcement learning. It will give you a good understanding of the basic reinforcement learning framework for developing artificial intelligent agents. This chapter will also introduce deep reinforcement learning and provide you with a flavor of the types of advanced problems the algorithms enable you to solve. You will find mathematical expressions and equations used in quite a few places in this chapter. Although there's enough theory behind reinforcement learning and deep reinforcement learning to fill a whole book, the key concepts that are useful for practical implementation are discussed in this chapter, so that when we actually implement the algorithms in Python to train our agents, you can clearly understand the logic behind...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand