Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Natural Language Processing Cookbook

You're reading from   Python Natural Language Processing Cookbook Over 60 recipes for building powerful NLP solutions using Python and LLM libraries

Arrow left icon
Product type Paperback
Published in Sep 2024
Publisher Packt
ISBN-13 9781803245744
Length 312 pages
Edition 2nd Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Saurabh Chakravarty Saurabh Chakravarty
Author Profile Icon Saurabh Chakravarty
Saurabh Chakravarty
Zhenya Antić Zhenya Antić
Author Profile Icon Zhenya Antić
Zhenya Antić
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Chapter 1: Learning NLP Basics 2. Chapter 2: Playing with Grammar FREE CHAPTER 3. Chapter 3: Representing Text – Capturing Semantics 4. Chapter 4: Classifying Texts 5. Chapter 5: Getting Started with Information Extraction 6. Chapter 6: Topic Modeling 7. Chapter 7: Visualizing Text Data 8. Chapter 8: Transformers and Their Applications 9. Chapter 9: Natural Language Understanding 10. Chapter 10: Generative AI and Large Language Models 11. Index 12. Other Books You May Enjoy

Performing named entity recognition using spaCy

Named entity recognition (NER) is the task of parsing the names of places, people, organizations, and so on, out of text. This can be useful in many downstream tasks. For example, you could imagine a situation where you would like to sort an article set by the people that are mentioned in it, for example, when carrying out research about a certain person.

In this recipe, we will use NER to parse out named entities from article texts in the BBC dataset. We will load the package and the parsing engine and loop through the NER results.

Getting ready

In this recipe, we will use spaCy. To run it correctly, you will need to download a language model. We will download the small and large models. These models take up significant disk space:

python -m spacy download en_core_web_sm
python -m spacy download en_core_web_lg

The notebook is located at https://github.com/PacktPublishing/Python-Natural-Language-Processing-Cookbook-Second...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image