Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
SQL for Data Analytics

You're reading from   SQL for Data Analytics Harness the power of SQL to extract insights from data

Arrow left icon
Product type Paperback
Published in Aug 2022
Publisher Packt
ISBN-13 9781801812870
Length 540 pages
Edition 3rd Edition
Languages
Arrow right icon
Authors (4):
Arrow left icon
Benjamin Johnston Benjamin Johnston
Author Profile Icon Benjamin Johnston
Benjamin Johnston
Matt Goldwasser Matt Goldwasser
Author Profile Icon Matt Goldwasser
Matt Goldwasser
Jun Shan Jun Shan
Author Profile Icon Jun Shan
Jun Shan
Upom Malik Upom Malik
Author Profile Icon Upom Malik
Upom Malik
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Understanding and Describing Data 2. The Basics of SQL for Analytics FREE CHAPTER 3. SQL for Data Preparation 4. Aggregate Functions for Data Analysis 5. Window Functions for Data Analysis 6. Importing and Exporting Data 7. Analytics Using Complex Data Types 8. Performant SQL 9. Using SQL to Uncover the Truth: A Case Study Appendix

Summary

Data analytics can be enhanced by the power of relational databases. Relational databases are a mature and ubiquitous technology used for storing and querying structured data. Relational databases store data in the form of relations, also known as tables, which allow an excellent combination of performance, efficiency, and ease of use.

SQL is the language used to access relational databases. SQL supports many different data types, including numeric data, text data, and even data structures.

SQL can be used to perform all the tasks in the lifecycle of Create, Read, Update, and Delete (CRUD). SQL can be used to create and drop tables, as well as insert, delete, and update data elements. When querying data, SQL allows a user to pick which fields to pull, as well as how to filter the data. This data can also be ordered, and SQL allows as much or as little data as you need to be pulled.

Having reviewed the basics of data analytics and SQL, you will move on to the next chapter's discussion of how SQL can be used to perform the first step in data analytics: cleaning and transformation of data.

You have been reading a chapter from
SQL for Data Analytics - Third Edition
Published in: Aug 2022
Publisher: Packt
ISBN-13: 9781801812870
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image