Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Unsupervised Learning Workshop

You're reading from   The Unsupervised Learning Workshop Get started with unsupervised learning algorithms and simplify your unorganized data to help make future predictions

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781800200708
Length 550 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Benjamin Johnston Benjamin Johnston
Author Profile Icon Benjamin Johnston
Benjamin Johnston
Christopher Kruger Christopher Kruger
Author Profile Icon Christopher Kruger
Christopher Kruger
Aaron Jones Aaron Jones
Author Profile Icon Aaron Jones
Aaron Jones
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface
1. Introduction to Clustering 2. Hierarchical Clustering FREE CHAPTER 3. Neighborhood Approaches and DBSCAN 4. Dimensionality Reduction Techniques and PCA 5. Autoencoders 6. t-Distributed Stochastic Neighbor Embedding 7. Topic Modeling 8. Market Basket Analysis 9. Hotspot Analysis Appendix

Association Rules

Association rule learning is a machine learning model that seeks to unearth the hidden patterns (in other words, relationships) in transaction data that describe the shopping habits of the customers of any retailer. The definition of an association rule was hinted at when the common probabilistic metrics were defined and explained earlier in the chapter.

Consider the imaginary frequent item set {Milk, Bread}. Two association rules can be formed from that item set: Milk Formula Bread and Bread Formula Milk. For simplicity, the first item set in the association rule is referred to as the antecedent, while the second item set in the association rule is referred to as the consequent. Once the association rules have been identified, all the previously discussed metrics can be computed to evaluate the validity of the association rules, determining whether or not the rules can be leveraged in the decision-making process.

The establishment of an association rule is based on support...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image