In Chapter 6, Implementing an Intelligent Agent for Optimal Control using Deep Q-Learning, we implemented agents using deep Q-learning to solve discrete control tasks that involve discrete actions or decisions to be made. We saw how they can be trained to play video games such as Atari, just like we do: by looking at the game screen and pressing the buttons on the game pad/joystick. We can use such agents to pick the best choice given a finite set of choices, make decisions, or perform actions where the number of possible decisions or actions is finite and typically small. There are numerous real-world problems that can be solved with an agent that can learn to take optimal through to discrete actions. We saw some examples in Chapter 6, Implementing an Intelligent Agent for Optimal Discrete...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia