Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Deep Learning

You're reading from   Python Deep Learning Understand how deep neural networks work and apply them to real-world tasks

Arrow left icon
Product type Paperback
Published in Nov 2023
Publisher Packt
ISBN-13 9781837638505
Length 362 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ivan Vasilev Ivan Vasilev
Author Profile Icon Ivan Vasilev
Ivan Vasilev
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1:Introduction to Neural Networks
2. Chapter 1: Machine Learning – an Introduction FREE CHAPTER 3. Chapter 2: Neural Networks 4. Chapter 3: Deep Learning Fundamentals 5. Part 2: Deep Neural Networks for Computer Vision
6. Chapter 4: Computer Vision with Convolutional Networks 7. Chapter 5: Advanced Computer Vision Applications 8. Part 3: Natural Language Processing and Transformers
9. Chapter 6: Natural Language Processing and Recurrent Neural Networks 10. Chapter 7: The Attention Mechanism and Transformers 11. Chapter 8: Exploring Large Language Models in Depth 12. Chapter 9: Advanced Applications of Large Language Models 13. Part 4: Developing and Deploying Deep Neural Networks
14. Chapter 10: Machine Learning Operations (MLOps) 15. Index 16. Other Books You May Enjoy

Introducing RNNs

An RNN is a type of NN that can process sequential data with variable length. Examples of such data include text sequences or the price of a stock at various moments in time. By using the word sequential, we imply that the sequence elements are related to each other and their order matters. For example, if we take a book and randomly shuffle all the words in it, the text will lose its meaning, even though we’ll still know the individual words.

RNNs get their name because they apply the same function over a sequence recurrently. We can define an RNN as a recurrence relation:

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math" display="block"><mml:msub><mml:mrow><mml:mi mathvariant="bold">s</mml:mi></mml:mrow><mml:mrow><mml:mi>t</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mi>f</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="bold">s</mml:mi></mml:mrow><mml:mrow><mml:mi>t</mml:mi><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant="bold">x</mml:mi></mml:mrow><mml:mrow><mml:mi>t</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mfenced></mml:math>

Here, f is a differentiable function, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi mathvariant="bold">s</mml:mi></mml:mrow><mml:mrow><mml:mi>t</mml:mi></mml:mrow></mml:msub></mml:math> is a vector of values called internal RNN state (at step t), and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi mathvariant="bold">x</mml:mi></mml:mrow><mml:mrow><mml:mi>t</mml:mi></mml:mrow></mml:msub></mml:math> is the network input at step t. Unlike regular NNs, where the state only depends on the current input (and RNN weights), here, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi mathvariant="bold">s</mml:mi></mml:mrow><mml:mrow><mml:mi>t</mml:mi></mml:mrow></mml:msub></mml:math> is a function of both the current input, as well as the previous state, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi mathvariant="bold">s</mml:mi></mml:mrow><mml:mrow><mml:mi>t</mml:mi><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math>. You can think of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi mathvariant="bold">s</mml:mi></mml:mrow><mml:mrow><mml:mi>t</mml:mi><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math> as the RNN’s summary of all previous inputs. The...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image