Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Social Media Analytics

You're reading from   Python Social Media Analytics Analyze and visualize data from Twitter, YouTube, GitHub, and more

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781787121485
Length 312 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Baihaqi Siregar Baihaqi Siregar
Author Profile Icon Baihaqi Siregar
Baihaqi Siregar
Siddhartha Chatterjee Siddhartha Chatterjee
Author Profile Icon Siddhartha Chatterjee
Siddhartha Chatterjee
Michal Krystyanczuk Michal Krystyanczuk
Author Profile Icon Michal Krystyanczuk
Michal Krystyanczuk
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction to the Latest Social Media Landscape and Importance FREE CHAPTER 2. Harnessing Social Data - Connecting, Capturing, and Cleaning 3. Uncovering Brand Activity, Popularity, and Emotions on Facebook 4. Analyzing Twitter Using Sentiment Analysis and Entity Recognition 5. Campaigns and Consumer Reaction Analytics on YouTube – Structured and Unstructured 6. The Next Great Technology – Trends Mining on GitHub 7. Scraping and Extracting Conversational Topics on Internet Forums 8. Demystifying Pinterest through Network Analysis of Users Interests 9. Social Data Analytics at Scale – Spark and Amazon Web Services

Summary

The avalanche of social network data is a result of communication platforms being developed for the last two decades. These are the platforms that evolved from chat rooms to personal information sharing and finally, social and professional networks. Among many, Facebook, Twitter, Instagram, Pinterest, and LinkedIn have emerged as the modern day social media. These platforms collectively have reach of more than a billion individuals across the world, sharing their activities and interaction with each other. Sharing of their data by these media through APIs and other technologies has given rise to a new field called social media analytics. This has multiple applications, such as in marketing, personalized recommendations, research, and societal. modern data science techniques such as machine learning and text mining are widely used for these applications. Python is one of the most programming languages used for these techniques. However, manipulating the unstructured-data from social networks requires a lot of precise processing and preparation before coming to the most interesting bits.

In the next chapter, we will see the way this data from social networks can be harnessed, processed, and prepared to make a sandbox for interesting analysis and applications in the subsequent chapters.

You have been reading a chapter from
Python Social Media Analytics
Published in: Jul 2017
Publisher: Packt
ISBN-13: 9781787121485
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image