Using Hidden Markov Models (HMMs) is a technique for modeling Markov processes with unobserved states. They are a special case of Dynamic Bayesian Networks (DBNs) but have been found to perform well in a wide range of problems. One of the areas where HMMs are used a lot is speech recognition because HMMs are able to provide a very natural way to model speech data. This book starts by introducing the theoretical aspects of HMMs from the basics of probability theory, and then talks about the different applications of HMMs.
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia