Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Analysis

You're reading from   Python Data Analysis Perform data collection, data processing, wrangling, visualization, and model building using Python

Arrow left icon
Product type Paperback
Published in Feb 2021
Publisher Packt
ISBN-13 9781789955248
Length 478 pages
Edition 3rd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Avinash Navlani Avinash Navlani
Author Profile Icon Avinash Navlani
Avinash Navlani
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Foundation for Data Analysis
2. Getting Started with Python Libraries FREE CHAPTER 3. NumPy and pandas 4. Statistics 5. Linear Algebra 6. Section 2: Exploratory Data Analysis and Data Cleaning
7. Data Visualization 8. Retrieving, Processing, and Storing Data 9. Cleaning Messy Data 10. Signal Processing and Time Series 11. Section 3: Deep Dive into Machine Learning
12. Supervised Learning - Regression Analysis 13. Supervised Learning - Classification Techniques 14. Unsupervised Learning - PCA and Clustering 15. Section 4: NLP, Image Analytics, and Parallel Computing
16. Analyzing Textual Data 17. Analyzing Image Data 18. Parallel Computing Using Dask 19. Other Books You May Enjoy

Summary

In this chapter, we have discussed various data analysis processes, including KDD, SEMMA, and CRISP-DM. We then discussed the roles and skillsets of data analysts and data scientists. After that, we installed NumPy, SciPy, Pandas, Matplotlib, IPython, Jupyter Notebook, Anaconda, and Jupyter Lab, all of which we will be using in this book. Instead of installing all those modules, you can install Anaconda or Jupyter Lab, which has NumPy, Pandas, SciPy, and Scikit-learn built-in.

Then, we got a vector addition program working and learned how NumPy offers superior performance compared to the other libraries. We explored the available documentation and online resources. In addition, we discussed Jupyter Lab, Jupyter Notebook, and their features.

In the next chapter, Chapter 2, NumPy and Pandas, we will take a look at NumPy and Pandas under the hood and explore some of the fundamental concepts surrounding arrays and DataFrames.

You have been reading a chapter from
Python Data Analysis - Third Edition
Published in: Feb 2021
Publisher: Packt
ISBN-13: 9781789955248
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image