Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with Theano

You're reading from   Deep Learning with Theano Perform large-scale numerical and scientific computations efficiently

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781786465825
Length 300 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Christopher Bourez Christopher Bourez
Author Profile Icon Christopher Bourez
Christopher Bourez
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Theano Basics FREE CHAPTER 2. Classifying Handwritten Digits with a Feedforward Network 3. Encoding Word into Vector 4. Generating Text with a Recurrent Neural Net 5. Analyzing Sentiment with a Bidirectional LSTM 6. Locating with Spatial Transformer Networks 7. Classifying Images with Residual Networks 8. Translating and Explaining with Encoding – decoding Networks 9. Selecting Relevant Inputs or Memories with the Mechanism of Attention 10. Predicting Times Sequences with Advanced RNN 11. Learning from the Environment with Reinforcement 12. Learning Features with Unsupervised Generative Networks 13. Extending Deep Learning with Theano Index

Installing and loading Theano

In this section, we'll install Theano, run it on the CPU and GPU devices, and save the configuration.

Conda package and environment manager

The easiest way to install Theano is to use conda, a cross-platform package and environment manager.

If conda is not already installed on your operating system, the fastest way to install conda is to download the miniconda installer from https://conda.io/miniconda.html. For example, for conda under Linux 64 bit and Python 2.7, use this command:

wget https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh
chmod +x Miniconda2-latest-Linux-x86_64.sh
bash ./Miniconda2-latest-Linux-x86_64.sh

Conda enables us to create new environments in which versions of Python (2 or 3) and the installed packages may differ. The conda root environment uses the same version of Python as the version installed on the system on which you installed conda.

Installing and running Theano on CPU

Let's install Theano:

conda install theano

Run a Python session and try the following commands to check your configuration:

>>> from theano import theano

>>> theano.config.device
'cpu'

>>> theano.config.floatX
'float64'

>>> print(theano.config)

The last command prints all the configuration of Theano. The theano.config object contains keys to many configuration options.

To infer the configuration options, Theano looks first at the ~/.theanorc file, then at any environment variables that are available, which override the former options, and lastly at the variable set in the code that are first in order of precedence:

>>> theano.config.floatX='float32'

Some of the properties might be read-only and cannot be changed in the code, but floatX, which sets the default floating point precision for floats, is among the properties that can be changed directly in the code.

Note

It is advised to use float32 since GPU has a long history without float64. float64 execution speed on GPU is slower, sometimes much slower (2x to 32x on latest generation Pascal hardware), and float32 precision is enough in practice.

GPU drivers and libraries

Theano enables the use of GPU, units that are usually used to compute the graphics to display on the computer screen.

To have Theano work on the GPU as well, a GPU backend library is required on your system.

The CUDA library (for NVIDIA GPU cards only) is the main choice for GPU computations. There is also the OpenCL standard, which is open source but far less developed, and much more experimental and rudimentary on Theano.

Most scientific computations still occur on NVIDIA cards at the moment. If you have an NVIDIA GPU card, download CUDA from the NVIDIA website, https://developer.nvidia.com/cuda-downloads, and install it. The installer will install the latest version of the GPU drivers first, if they are not already installed. It will install the CUDA library in the /usr/local/cuda directory.

Install the cuDNN library, a library by NVIDIA, that offers faster implementations of some operations for the GPU. To install it, I usually copy the /usr/local/cuda directory to a new directory, /usr/local/cuda-{CUDA_VERSION}-cudnn-{CUDNN_VERSION}, so that I can choose the version of CUDA and cuDNN, depending on the deep learning technology I use and its compatibility.

In your .bashrc profile, add the following line to set the $PATH and $LD_LIBRARY_PATH variables:

export PATH=/usr/local/cuda-8.0-cudnn-5.1/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-8.0-cudnn-5.1/lib64:/usr/local/cuda-8.0-cudnn-5.1/lib:$LD_LIBRARY_PATH

Installing and running Theano on GPU

N-dimensional GPU arrays have been implemented in Python in six different GPU libraries (Theano/CudaNdarray,PyCUDA/ GPUArray,CUDAMAT/ CUDAMatrix, PYOPENCL/GPUArray, Clyther, Copperhead), are a subset of NumPy.ndarray. Libgpuarray is a backend library to have them in a common interface with the same property.

To install libgpuarray with conda, use this command:

conda install pygpu

To run Theano in GPU mode, you need to configure the config.device variable before execution since it is a read-only variable once the code is run. Run this command with the THEANO_FLAGS environment variable:

THEANO_FLAGS="device=cuda,floatX=float32" python
>>> import theano
Using cuDNN version 5110 on context None
Mapped name None to device cuda: Tesla K80 (0000:83:00.0)

>>> theano.config.device
'gpu'

>>> theano.config.floatX
'float32'

The first return shows that GPU device has been correctly detected, and specifies which GPU it uses.

By default, Theano activates CNMeM, a faster CUDA memory allocator. An initial pre-allocation can be specified with the gpuarra.preallocate option. At the end, my launch command will be as follows:

THEANO_FLAGS="device=cuda,floatX=float32,gpuarray.preallocate=0.8" python
>>> from theano import theano
Using cuDNN version 5110 on context None
Preallocating 9151/11439 Mb (0.800000) on cuda
Mapped name None to device cuda: Tesla K80 (0000:83:00.0)

The first line confirms that cuDNN is active, the second confirms memory pre-allocation. The third line gives the default context name (that is, None when flag device=cuda is set) and the model of GPU used, while the default context name for the CPU will always be cpu.

It is possible to specify a different GPU than the first one, setting the device to cuda0, cuda1,... for multi-GPU computers. It is also possible to run a program on multiple GPU in parallel or in sequence (when the memory of one GPU is not sufficient), in particular when training very deep neural nets, as for classification of full images as described in Chapter 7, Classifying Images with Residual Networks. In this case, the contexts=dev0->cuda0;dev1->cuda1;dev2->cuda2;dev3->cuda3 flag activates multiple GPUs instead of one, and designates the context name to each GPU device to be used in the code. Here is an example on a 4-GPU instance:

THEANO_FLAGS="contexts=dev0->cuda0;dev1->cuda1;dev2->cuda2;dev3->cuda3,floatX=float32,gpuarray.preallocate=0.8" python
>>> import theano
Using cuDNN version 5110 on context None
Preallocating 9177/11471 Mb (0.800000) on cuda0
Mapped name dev0 to device cuda0: Tesla K80 (0000:83:00.0)
Using cuDNN version 5110 on context dev1
Preallocating 9177/11471 Mb (0.800000) on cuda1
Mapped name dev1 to device cuda1: Tesla K80 (0000:84:00.0)
Using cuDNN version 5110 on context dev2
Preallocating 9177/11471 Mb (0.800000) on cuda2
Mapped name dev2 to device cuda2: Tesla K80 (0000:87:00.0)
Using cuDNN version 5110 on context dev3
Preallocating 9177/11471 Mb (0.800000) on cuda3
Mapped name dev3 to device cuda3: Tesla K80 (0000:88:00.0)

To assign computations to a specific GPU in this multi-GPU setting, the names we choose, dev0, dev1, dev2, and dev3, have been mapped to each device (cuda0, cuda1, cuda2, cuda3).

This name mapping enables to write codes that are independent of the underlying GPU assignments and libraries (CUDA or others).

To keep the current configuration flags active at every Python session or execution without using environment variables, save your configuration in the ~/.theanorc file as follows:

 [global]
 floatX = float32
 device = cuda0
 [gpuarray]
 preallocate = 1

Now you can simply run python command. You are now all set.

You have been reading a chapter from
Deep Learning with Theano
Published in: Jul 2017
Publisher: Packt
ISBN-13: 9781786465825
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image