Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with Theano

You're reading from   Deep Learning with Theano Perform large-scale numerical and scientific computations efficiently

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781786465825
Length 300 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Christopher Bourez Christopher Bourez
Author Profile Icon Christopher Bourez
Christopher Bourez
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Theano Basics FREE CHAPTER 2. Classifying Handwritten Digits with a Feedforward Network 3. Encoding Word into Vector 4. Generating Text with a Recurrent Neural Net 5. Analyzing Sentiment with a Bidirectional LSTM 6. Locating with Spatial Transformer Networks 7. Classifying Images with Residual Networks 8. Translating and Explaining with Encoding – decoding Networks 9. Selecting Relevant Inputs or Memories with the Mechanism of Attention 10. Predicting Times Sequences with Advanced RNN 11. Learning from the Environment with Reinforcement 12. Learning Features with Unsupervised Generative Networks 13. Extending Deep Learning with Theano Index

Residual connections


While very deep architectures (with many layers) perform better, they are harder to train, because the input signal decreases through the layers. Some have tried training the deep networks in multiple stages.

An alternative to this layer-wise training is to add a supplementary connection to shortcut a block of layers, named the identity connection, passing the signal without modification, in addition to the classic convolutional layers, named the residuals, forming a residual block, as shown in the following image:

Such a residual block is composed of six layers.

A residual network is a network composed of multiple residual blocks. Input is processed by a first convolution, followed by batch normalization and non-linearity:

For example, for a residual net composed of two residual blocks, and eight featuremaps in the first convolution on an input image of size 28x28, the layer output shapes will be the following:

InputLayer                       (None, 1, 28, 28)
Conv2DDNNLayer...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image