Throughout this book, we've discussed multiple feature engineering techniques that we can use to engineer variables in tabular data, where each observation is independent and shows only 1 value for each available variable. However, data can also contain multiple values that are not independent for each entity. For example, there can be multiple records for each customer with the details of the customer's transactions within our organization, such as purchases, payments, claims, deposits, and withdrawals. In other cases, the values of the variables may change daily, such as stock prices or energy consumption per household. The first data sources are referred to as transactional data, whereas the second data sources are time series. Time series and transactional data contain time-stamped observations, which means...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia