Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Modern Python Cookbook

You're reading from   Modern Python Cookbook 130+ updated recipes for modern Python 3.12 with new techniques and tools

Arrow left icon
Product type Paperback
Published in Jul 2024
Publisher Packt
ISBN-13 9781835466384
Length 818 pages
Edition 3rd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Steven F. Lott Steven F. Lott
Author Profile Icon Steven F. Lott
Steven F. Lott
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Chapter 1 Numbers, Strings, and Tuples FREE CHAPTER 2. Chapter 2 Statements and Syntax 3. Chapter 3 Function Definitions 4. Chapter 4 Built-In Data Structures Part 1: Lists and Sets 5. Chapter 5 Built-In Data Structures Part 2: Dictionaries 6. Chapter 6 User Inputs and Outputs 7. Chapter 7 Basics of Classes and Objects 8. Chapter 8 More Advanced Class Design 9. Chapter 9 Functional Programming Features 10. Chapter 10 Working with Type Matching and Annotations 11. Chapter 11 Input/Output, Physical Format, and Logical Layout 12. Chapter 12 Graphics and Visualization with Jupyter Lab 13. Chapter 13 Application Integration: Configuration 14. Chapter 14 Application Integration: Combination 15. Chapter 15 Testing 16. Chapter 16 Dependencies and Virtual Environments 17. Chapter 17 Documentation and Style 18. Other Books You May Enjoy
19. Index

12
Graphics and Visualization with Jupyter Lab

A great many problems are simplified through visualization of the data. The human eye is particularly suited to identifying relationships and trends. Given a display of a potential relationship (or trend), it makes sense to turn to more formal statistical methods to quantify the relationship.

Python offers a number of graphical tools. For data analytics purposes, one of the most popular is matplotlib. This package offers numerous graphic capablities. It integrates well with Jupyter Lab, providing us an interactive environment to visualize and analyze data.

It’s possible to do a great deal of Python development in Jupyter Lab. While wonderful, this is not a perfect Integrated Development Environment (IDE). The one minor drawback is the interactive notebook relies on global variables, something that isn’t ideal for writing modules or applications. The use of global variables can lead to confusion when transforming...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image