Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Modern Scala Projects

You're reading from   Modern Scala Projects Leverage the power of Scala for building data-driven and high performance projects

Arrow left icon
Product type Paperback
Published in Jul 2018
Publisher Packt
ISBN-13 9781788624114
Length 334 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Ilango gurusamy Ilango gurusamy
Author Profile Icon Ilango gurusamy
Ilango gurusamy
Arrow right icon
View More author details
Toc

Predict the Class of a Flower from the Iris Dataset

This chapter kicks off a machine learning (ML) initiative in Scala and Spark. Speaking of Spark, its Machine Learning Library (MLlibliving under the spark.ml package and accessible via its MLlib DataFrame-based API will help us develop scalable data analysis applications. The MLlib DataFrame-based API, also known as Spark ML, provides powerful learning algorithms and pipeline building tools for data analysis. Needless to say, we will, starting this chapter, leverage MLlib's classification algorithms.

The Spark ecosystem, also boasting of APIs to R, Python, and Java in addition to Scala, empowers our readers, be they beginner, or seasoned data professionals, to make sense of and extract analytics from various datasets. 

Speaking of datasets, the Iris dataset is the simplest, yet the most famous data analysis task in the ML space. This chapter builds a solution to the data analysis classification task that the Iris dataset represents. 

Here is the dataset we will refer to:

The overarching learning objective of this chapter is to implement a Scala solution to the so-called multivariate classification task represented by the Iris dataset.

The following list is a section-wise breakdown of individual learning outcomes:

  • A multivariate classification problem
  • Project overview—problem formulation
  • Getting started with Spark
  • Implementing a multiclass classification pipeline

The following section offers the reader an in-depth perspective on the Iris dataset classification problem.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image