Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R Deep Learning Essentials

You're reading from   R Deep Learning Essentials A step-by-step guide to building deep learning models using TensorFlow, Keras, and MXNet

Arrow left icon
Product type Paperback
Published in Aug 2018
Publisher Packt
ISBN-13 9781788992893
Length 378 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Joshua F. Wiley Joshua F. Wiley
Author Profile Icon Joshua F. Wiley
Joshua F. Wiley
Mark Hodnett Mark Hodnett
Author Profile Icon Mark Hodnett
Mark Hodnett
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Deep Learning FREE CHAPTER 2. Training a Prediction Model 3. Deep Learning Fundamentals 4. Training Deep Prediction Models 5. Image Classification Using Convolutional Neural Networks 6. Tuning and Optimizing Models 7. Natural Language Processing Using Deep Learning 8. Deep Learning Models Using TensorFlow in R 9. Anomaly Detection and Recommendation Systems 10. Running Deep Learning Models in the Cloud 11. The Next Level in Deep Learning 12. Other Books You May Enjoy

References/further reading

These papers are classical deep learning papers in this domain. Some of them document winning approaches to ImageNet competitions. I encourage you to download and read all of them. You may not understand them at first, but their importance will become more evident as you continue on your journey in deep learning.

  • Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. Advances in neural information processing systems. 2012.
  • Szegedy, Christian, et al. Going Deeper with Convolutions. Cvpr, 2015.
  • LeCun, Yann, et al. Learning Algorithms for Classification: A Comparison on Handwritten Digit Recognition. Neural networks: the statistical mechanics perspective 261 (1995): 276.
  • Zeiler, Matthew D., and Rob Fergus. Visualizing and Understanding Convolutional Networks. European conference on computer...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image