Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R High Performance Programming

You're reading from   R High Performance Programming Overcome performance difficulties in R with a range of exciting techniques and solutions

Arrow left icon
Product type Paperback
Published in Jan 2015
Publisher
ISBN-13 9781783989263
Length 176 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Tjhi W Chandra Tjhi W Chandra
Author Profile Icon Tjhi W Chandra
Tjhi W Chandra
Aloysius Shao Qin Lim Aloysius Shao Qin Lim
Author Profile Icon Aloysius Shao Qin Lim
Aloysius Shao Qin Lim
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Understanding R's Performance – Why Are R Programs Sometimes Slow? FREE CHAPTER 2. Profiling – Measuring Code's Performance 3. Simple Tweaks to Make R Run Faster 4. Using Compiled Code for Greater Speed 5. Using GPUs to Run R Even Faster 6. Simple Tweaks to Use Less RAM 7. Processing Large Datasets with Limited RAM 8. Multiplying Performance with Parallel Computing 9. Offloading Data Processing to Database Systems 10. R and Big Data Index

Identifying and resolving bottlenecks

Now that we have covered the basic techniques to profile an R code, which performance bottlenecks should we try to solve first?

As a rule of thumb, we first try to improve the pieces of code that are causing the largest performance bottlenecks, whether in terms of execution time, memory utilization, or other measures. These can be identified with the profiling techniques covered earlier. Then we work our way down the list of the largest bottlenecks until the overall performance of the program is good enough.

As you can recall, the varsamp() example that we profiled using Rprof(). The function with the highest self.time was sq.var(). How can we make this function run faster? We can write it in the form of a vector operation my.sum((x - mu) ^ 2) rather than looping through each element of x. As we will see in the next chapter, converting loops to vectorized operations is a good way to speed up many R operations. In fact, we can even remove the function...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image