Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Bayesian Analysis with Python

You're reading from   Bayesian Analysis with Python A practical guide to probabilistic modeling

Arrow left icon
Product type Paperback
Published in Jan 2024
Publisher Packt
ISBN-13 9781805127161
Length 394 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Osvaldo Martin Osvaldo Martin
Author Profile Icon Osvaldo Martin
Osvaldo Martin
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface
1. Chapter 1 Thinking Probabilistically FREE CHAPTER 2. Chapter 2 Programming Probabilistically 3. Chapter 3 Hierarchical Models 4. Chapter 4 Modeling with Lines 5. Chapter 5 Comparing Models 6. Chapter 6 Modeling with Bambi 7. Chapter 7 Mixture Models 8. Chapter 8 Gaussian Processes 9. Chapter 9 Bayesian Additive Regression Trees 10. Chapter 10 Inference Engines 11. Chapter 11 Where to Go Next 12. Bibliography
13. Other Books You May Enjoy
14. Index

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka , Yuxi (Hayden) Liu, Vahid Mirjalili

ISBN: 978-1-80181-931-2

  • Explore frameworks, models, and techniques for machines to learn from data
  • Use scikit-learn for machine learning and PyTorch for deep learning
  • Train machine learning classifiers on images, text, and more
  • Build and train neural networks, transformers, and boosting algorithms
  • Discover best practices for evaluating and tuning models
  • Predict continuous target outcomes using regression analysis
  • Dig deeper into textual and social media data using sentiment analysis

Machine Learning with R - Fourth Edition

Brett Lantz

ISBN: 978-1-80107-132-1

  • Learn the end-to-end process of machine learning from raw data to implementation
  • Classify important outcomes using nearest neighbor and Bayesian methods
  • Predict future events using decision trees, rules, and support vector...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image