Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Bioinformatics with Python Cookbook

You're reading from   Bioinformatics with Python Cookbook Use modern Python libraries and applications to solve real-world computational biology problems

Arrow left icon
Product type Paperback
Published in Sep 2022
Publisher Packt
ISBN-13 9781803236421
Length 360 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Tiago Antao Tiago Antao
Author Profile Icon Tiago Antao
Tiago Antao
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Chapter 1: Python and the Surrounding Software Ecology 2. Chapter 2: Getting to Know NumPy, pandas, Arrow, and Matplotlib FREE CHAPTER 3. Chapter 3: Next-Generation Sequencing 4. Chapter 4: Advanced NGS Data Processing 5. Chapter 5: Working with Genomes 6. Chapter 6: Population Genetics 7. Chapter 7: Phylogenetics 8. Chapter 8: Using the Protein Data Bank 9. Chapter 9: Bioinformatics Pipelines 10. Chapter 10: Machine Learning for Bioinformatics 11. Chapter 11: Parallel Processing with Dask and Zarr 12. Chapter 12: Functional Programming for Bioinformatics 13. Index 14. Other Books You May Enjoy

Using sgkit for population genetics analysis with xarray

Sgkit is the most advanced Python library for doing population genetics analysis. It’s a modern implementation, leveraging almost all of the fundamental data science libraries in Python. When I say almost all, I am not exaggerating; it uses NumPy, pandas, xarray, Zarr, and Dask. NumPy and pandas were introduced in Chapter 2. Here, we will introduce xarray as the main data container for sgkit. Because I feel that I cannot ask you to get to know data engineering libraries to an extreme level, I will gloss over the Dask part (mostly by treating Dask structures as equivalent NumPy structures). You can find more advanced details about out-of-memory Dask data structures in Chapter 11.

Getting ready

You will need to run the previous recipe because its output is required for this one: we will be using one of the PLINK datasets. You will need to install sgkit.

As usual, this is available in the Chapter06/Sgkit.py Notebook...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image