Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Markov Models with Python

You're reading from   Hands-On Markov Models with Python Implement probabilistic models for learning complex data sequences using the Python ecosystem

Arrow left icon
Product type Paperback
Published in Sep 2018
Publisher Packt
ISBN-13 9781788625449
Length 178 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Ankur Ankan Ankur Ankan
Author Profile Icon Ankur Ankan
Ankur Ankan
Abinash Panda Abinash Panda
Author Profile Icon Abinash Panda
Abinash Panda
Arrow right icon
View More author details
Toc

Parameter Learning Using Maximum Likelihood

In the previous chapter, we discussed the state inference in the case of a Hidden Markov Model (HMM). We tried to predict the next state for an HMM using the information of previous state transitions. But in each cases, we had assumed that we already knew the transition and emission probabilities of the model. But in real-life problems, we usually need to learn these parameters from our observations.

In this chapter, we will try to estimate the parameters of our HMM model through data gathered from observations. We will be covering the following topics:

  • Maximum likelihood learning, with examples
  • Maximum likelihood learning in HMMs
  • Expectation maximization algorithms
  • The Baum-Welch algorithm
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image