In previous chapters, we learned about various object detection techniques, such as the R-CNN family of algorithms, YOLO, SSD, and the U-Net and Mask R-CNN image segmentation algorithms. In this chapter, we will take our learning a step further – we will work on more realistic scenarios and learn about frameworks/architectures that are more optimized to solve detection and segmentation problems. We will start by leveraging the Detectron2 framework to train and detect custom objects present in an image. We will also predict the pose of humans present in an image using a pre-trained model. Furthermore, we will learn how to count the number of people in a crowd in an image and then learn about leveraging segmentation techniques to perform image colorization. Finally, we will learn about a modified version of YOLO to predict...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia