Congratulations! We've made it to the final chapter. We've come a long way. We started off with meta learning fundamentals and then we saw several one-shot learning algorithms such as siamese, prototypical, matching, and relation networks. Later, we also saw how NTM stores and retrieves information. Going ahead, we saw interesting meta learning algorithms such as MAML, Reptile, and Meta-SGD. We saw how these algorithms find an optimal initial parameter. Now, we'll see some of the recent advancements in meta learning. We'll learn about how task agnostic meta learning is used for reducing task bias in meta learning and how meta learning is used in the imitation learning system. Then, we'll see how can we apply MAML in an unsupervised learning setting using the CACTUs algorithm. Later, we'll learn about a deep meta...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia