Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Apache Mahout Essentials

You're reading from   Apache Mahout Essentials Implement top-notch machine learning algorithms for classification, clustering, and recommendations with Apache Mahout

Arrow left icon
Product type Paperback
Published in Jun 2015
Publisher
ISBN-13 9781783554997
Length 164 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Jayani Withanawasam Jayani Withanawasam
Author Profile Icon Jayani Withanawasam
Jayani Withanawasam
Arrow right icon
View More author details
Toc

How Apache Mahout works?

Let's take a look at the various components of Mahout.

The high-level design

The following table represents the high-level design of a Mahout implementation. Machine learning applications access the API, which provides support for implementing different machine learning techniques, such as clustering, classification, and recommendations.

Also, if the application requires preprocessing (for example, stop word removal and stemming) for text input, it can be achieved with Apache Lucene. Apache Hadoop provides data processing and storage to enable scalable processing.

Also, there will be performance optimizations using Java Collections and the Mahout-Math library. The Mahout-integration library contains utilities such as displaying the data and results.

The high-level design

The distribution

MapReduce is a programming paradigm to enable parallel processing. When it is applied to machine learning, we assign one MapReduce engine to one algorithm (for each MapReduce engine, one master is assigned).

Input is provided as Hadoop sequence files, which consist of binary key-value pairs. The master node manages the mappers and reducers. Once the input is represented as sequence files and sent to the master, it splits data and assigns the data to different mappers, which are other nodes. Then, it collects the intermediate outcome from mappers and sends them to related reducers for further processing. Lastly, the final outcome is generated.

You have been reading a chapter from
Apache Mahout Essentials
Published in: Jun 2015
Publisher:
ISBN-13: 9781783554997
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image