Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Building Machine Learning Systems with Python

You're reading from   Building Machine Learning Systems with Python Expand your Python knowledge and learn all about machine-learning libraries in this user-friendly manual. ML is the next big breakthrough in technology and this book will give you the head-start you need.

Arrow left icon
Product type Paperback
Published in Jul 2013
Publisher Packt
ISBN-13 9781782161400
Length 290 pages
Edition 1st Edition
Languages
Arrow right icon
Toc

Table of Contents (20) Chapters Close

Building Machine Learning Systems with Python
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
1. Getting Started with Python Machine Learning FREE CHAPTER 2. Learning How to Classify with Real-world Examples 3. Clustering – Finding Related Posts 4. Topic Modeling 5. Classification – Detecting Poor Answers 6. Classification II – Sentiment Analysis 7. Regression – Recommendations 8. Regression – Recommendations Improved 9. Classification III – Music Genre Classification 10. Computer Vision – Pattern Recognition 11. Dimensionality Reduction 12. Big(ger) Data Where to Learn More about Machine Learning Index

Chapter 1. Getting Started with Python Machine Learning

Machine learning (ML) teaches machines how to carry out tasks by themselves. It is that simple. The complexity comes with the details, and that is most likely the reason you are reading this book.

Maybe you have too much data and too little insight, and you hoped that using machine learning algorithms will help you solve this challenge. So you started to dig into random algorithms. But after some time you were puzzled: which of the myriad of algorithms should you actually choose?

Or maybe you are broadly interested in machine learning and have been reading a few blogs and articles about it for some time. Everything seemed to be magic and cool, so you started your exploration and fed some toy data into a decision tree or a support vector machine. But after you successfully applied it to some other data, you wondered, was the whole setting right? Did you get the optimal results? And how do you know there are no better algorithms? Or whether your data was "the right one"?

Welcome to the club! We, the authors, were at those stages once upon a time, looking for information that tells the real story behind the theoretical textbooks on machine learning. It turned out that much of that information was "black art", not usually taught in standard textbooks. So, in a sense, we wrote this book to our younger selves; a book that not only gives a quick introduction to machine learning, but also teaches you lessons that we have learned along the way. We hope that it will also give you, the reader, a smoother entry into one of the most exciting fields in Computer Science.

You have been reading a chapter from
Building Machine Learning Systems with Python
Published in: Jul 2013
Publisher: Packt
ISBN-13: 9781782161400
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image