Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Explainable AI (XAI) with Python

You're reading from   Hands-On Explainable AI (XAI) with Python Interpret, visualize, explain, and integrate reliable AI for fair, secure, and trustworthy AI apps

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781800208131
Length 454 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Denis Rothman Denis Rothman
Author Profile Icon Denis Rothman
Denis Rothman
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Explaining Artificial Intelligence with Python 2. White Box XAI for AI Bias and Ethics FREE CHAPTER 3. Explaining Machine Learning with Facets 4. Microsoft Azure Machine Learning Model Interpretability with SHAP 5. Building an Explainable AI Solution from Scratch 6. AI Fairness with Google's What-If Tool (WIT) 7. A Python Client for Explainable AI Chatbots 8. Local Interpretable Model-Agnostic Explanations (LIME) 9. The Counterfactual Explanations Method 10. Contrastive XAI 11. Anchors XAI 12. Cognitive XAI 13. Answers to the Questions 14. Other Books You May Enjoy
15. Index

Preface

In today's era of AI, accurately interpreting and communicating trustworthy AI findings is becoming a crucial skill to master. Artificial intelligence often surpasses human understanding. As such, the results of machine learning models can often prove difficult and sometimes impossible to explain. Both users and developers face challenges when asked to explain how and why an AI decision was made.

The AI designer cannot possibly design a single explainable AI solution for the hundreds of machine learning and deep learning models. Effectively translating AI insights to business stakeholders requires individual planning, design, and visualization choices. European and US law has opened the door to litigation when results cannot be explained, but developers face overwhelming amounts of data and results in real-life implementations, making it nearly impossible to find explanations without the proper tools.

In this book, you will learn about tools and techniques using Python to visualize, explain, and integrate trustworthy AI results to deliver business value, while avoiding common issues with AI bias and ethics.

Throughout the book, you will work with hands-on Python machine learning projects in Python and TensorFlow 2.x. You will learn how to use WIT, SHAP, LIME, CEM, and other key explainable AI tools. You will explore tools designed by IBM, Google, Microsoft, and other advanced AI research labs.

You will be introduced to several open source explainable AI tools for Python that can be used throughout the machine learning project lifecycle. You will learn how to explore machine learning model results, review key influencing variables and variable relationships, detect and handle bias and ethics issues, and integrate predictions using Python along with supporting machine learning model visualizations in user explainable interfaces.

We will build XAI solutions in Python and TensorFlow 2.x, and use Google Cloud's XAI platform and Google Colaboratory.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image