Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Applying Math with Python

You're reading from   Applying Math with Python Over 70 practical recipes for solving real-world computational math problems

Arrow left icon
Product type Paperback
Published in Dec 2022
Publisher Packt
ISBN-13 9781804618370
Length 376 pages
Edition 2nd Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Sam Morley Sam Morley
Author Profile Icon Sam Morley
Sam Morley
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Chapter 1: An Introduction to Basic Packages, Functions, and Concepts 2. Chapter 2: Mathematical Plotting with Matplotlib FREE CHAPTER 3. Chapter 3: Calculus and Differential Equations 4. Chapter 4: Working with Randomness and Probability 5. Chapter 5: Working with Trees and Networks 6. Chapter 6: Working with Data and Statistics 7. Chapter 7: Using Regression and Forecasting 8. Chapter 8: Geometric Problems 9. Chapter 9: Finding Optimal Solutions 10. Chapter 10: Improving Your Productivity 11. Index 12. Other Books You May Enjoy

Surface and contour plots

Matplotlib can also plot three-dimensional data in a variety of ways. Two common choices for displaying data such as this are using surface plots or contour plots (think of contour lines on a map). In this recipe, we will see a method for plotting surfaces from three-dimensional data and how to plot contours of three-dimensional data.

Getting ready

To plot three-dimensional data, it needs to be arranged into two-dimensional arrays for the , , and components, where both the and components must be of the same shape as the component. For the sake of this demonstration, we will plot the surface corresponding to the following function:

For 3D data, we can’t just use the routines from the pyplot interface. We need to import some extra functionality from another part of Matplotlib. We’ll see how to do this next.

How to do it...

We want to plot the function on the and range. The first task is to create a suitable grid of pairs on which to evaluate this function:

  1. We first use np.linspace to generate a reasonable number of points in these ranges:
    X = np.linspace(-5, 5)
    Y = np.linspace(-5, 5)
  2. Now, we need to create a grid on which to create our values. For this, we use the np.meshgrid routine:
    grid_x, grid_y = np.meshgrid(X, Y)
  3. Now, we can create values to plot, which hold the value of the function at each of the grid points:
    z = np.exp(-((grid_x-2.)**2 + (
        grid_y-3.)**2)/4) -  np.exp(-(
        (grid_x+3.)**2 + (grid_y+2.)**2)/3)
  4. To plot three-dimensional surfaces, we need to load a Matplotlib toolbox, mplot3d, which comes with the Matplotlib package. This won’t be used explicitly in the code, but behind the scenes, it makes the three-dimensional plotting utilities available to Matplotlib:
    from mpl_toolkits import mplot3d
  5. Next, we create a new figure and a set of three-dimensional axes for the figure:
    fig = plt.figure()
    # declare 3d plot
    ax = fig.add_subplot(projection="3d")
  6. Now, we can call the plot_surface method on these axes to plot the data (we set the colormap to gray for better visibility in print; see the next recipe for a more detailed discussion):
    ax.plot_surface(grid_x, grid_y, z, cmap="gray")
  7. It is extra important to add axis labels to three-dimensional plots because it might not be clear which axis is which on the displayed plot. We also set the title at this point:
    ax.set_xlabel("x")
    ax.set_ylabel("y")
    ax.set_zlabel("z")
    ax.set_title("Graph of the function f(x, y)")

You can use the plt.show routine to display the figure in a new window (if you are using Python interactively and not in a Jupyter notebook or on an IPython console) or plt.savefig to save the figure to a file. The result of the preceding sequence is shown here:

Figure 2.6 - A three-dimensional surface plot produced with Matplotlib

Figure 2.6 - A three-dimensional surface plot produced with Matplotlib

  1. Contour plots do not require the mplot3d toolkit, and there is a contour routine in the pyplot interface that produces contour plots. However, unlike the usual (two-dimensional) plotting routines, the contour routine requires the same arguments as the plot_surface method. We use the following sequence to produce a plot:
    fig = plt.figure()  # Force a new figure
    plt.contour(grid_x, grid_y, z, cmap="gray")
    plt.title("Contours of f(x, y)")
    plt.xlabel("x")
    plt.ylabel("y")

The result is shown in the following plot:

Figure 2.7 - Contour plot produced using Matplotlib with the default settings

Figure 2.7 - Contour plot produced using Matplotlib with the default settings

The peak and basin of the function are shown clearly here by the rings of concentric circles. In the top right, the shading is lighter, indicating that the function is increasing, and in the bottom left, the shade is darker, indicating that the function is decreasing. The curve that separates the regions in which the function is increasing and decreasing is shown between them.

How it works...

The mplot3d toolkit provides an Axes3D object, which is a three-dimensional version of the Axes object in the core Matplotlib package. This is made available to the axes method on a Figure object when the projection="3d" keyword argument is given. A surface plot is obtained by drawing quadrilaterals in the three-dimensional projection between nearby points in the same way that a two-dimensional curve is approximated by straight lines joining adjacent points.

The plot_surface method needs the values to be provided as a two-dimensional array that encodes the values on a grid of pairs. We created a range of and values that we are interested in, but if we simply evaluate our function on the pairs of corresponding values from these arrays, we will get the values along a line and not over a grid. Instead, we use the meshgrid routine, which takes the two X and Y arrays and creates from them a grid consisting of all the possible combinations of values in X and Y. The output is a pair of two-dimensional arrays on which we can evaluate our function. We can then provide all three of these two-dimensional arrays to the plot_surface method.

There’s more...

The routines described in the preceding section, contour and plot_surface, only work with highly structured data where the , , and components are arranged into grids. Unfortunately, real-life data is rarely so structured. In this case, you need to perform some kind of interpolation between known points to approximate the value on a uniform grid, which can then be plotted. A common method for performing this interpolation is by triangulating the collection of pairs and then using the values of the function on the vertices of each triangle to estimate the value on the grid points. Fortunately, Matplotlib has a method that does all of these steps and then plots the result, which is the plot_trisurf routine. We briefly explain how this can be used here:

  1. To illustrate the use of plot_trisurf, we will plot a surface and contours from the following data:
    x = np.array([ 0.19, -0.82, 0.8 , 0.95, 0.46, 0.71,
          -0.86, -0.55,   0.75,-0.98, 0.55, -0.17, -0.89,
                -0.4 , 0.48, -0.09, 1., -0.03, -0.87, -0.43])
    y = np.array([-0.25, -0.71, -0.88, 0.55, -0.88, 0.23,
            0.18,-0.06, 0.95, 0.04, -0.59, -0.21, 0.14, 0.94,
                  0.51, 0.47, 0.79, 0.33, -0.85, 0.19])
    z = np.array([-0.04, 0.44, -0.53, 0.4, -0.31,
        0.13,-0.12, 0.03, 0.53, -0.03, -0.25, 0.03, 
        -0.1 ,-0.29, 0.19, -0.03, 0.58, -0.01, 0.55, 
        -0.06])
  2. This time, we will plot both the surface and contour (approximations) on the same figure as two separate subplots. For this, we supply the projection="3d" keyword argument to the subplot that will contain the surface. We use the plot_trisurf method on the three-dimensional axes to plot the approximated surface, and the tricontour method on the two-dimensional axes to plot the approximated contours:
    fig = plt.figure(tight_layout=True)  # force new figure
    ax1 = fig.add_subplot(1, 2, 1, projection="3d")  # 3d axes
    ax1.plot_trisurf(x, y, z)
    ax1.set_xlabel("x")
    ax1.set_ylabel("y")
    ax1.set_zlabel("z")
    ax1.set_title("Approximate surface")
  3. We can now plot the contours for the triangulated surface using the following command:
    ax2 = fig.add_subplot(1, 2, 2)  # 2d axes
    ax2.tricontour(x, y, z)
    ax2.set_xlabel("x")
    ax2.set_ylabel("y")
    ax2.set_title("Approximate contours")

We include the tight_layout=True keyword argument with the figure to save a call to the plt.tight_layout routine later. The result is shown here:

Figure 2.8 - Approximate surface and contour plots generated from unstructured data using triangulation

Figure 2.8 - Approximate surface and contour plots generated from unstructured data using triangulation

In addition to surface plotting routines, the Axes3D object has a plot (or plot3D) routine for simple three-dimensional plotting, which works exactly as the usual plot routine but on three-dimensional axes. This method can also be used to plot two-dimensional data on one of the axes.

See also

Matplotlib is the go-to plotting library for Python, but other options do exist. We’ll see the Bokeh library in Chapter 6. There are other libraries, such as Plotly (https://plotly.com/python/), that simplify the process of creating certain types of plots and adding more features, such as interactive plots.

You have been reading a chapter from
Applying Math with Python - Second Edition
Published in: Dec 2022
Publisher: Packt
ISBN-13: 9781804618370
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image