Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Reinforcement Learning Hands-On

You're reading from   Deep Reinforcement Learning Hands-On Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more

Arrow left icon
Product type Paperback
Published in Jun 2018
Publisher Packt
ISBN-13 9781788834247
Length 546 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Maxim Lapan Maxim Lapan
Author Profile Icon Maxim Lapan
Maxim Lapan
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. What is Reinforcement Learning? 2. OpenAI Gym FREE CHAPTER 3. Deep Learning with PyTorch 4. The Cross-Entropy Method 5. Tabular Learning and the Bellman Equation 6. Deep Q-Networks 7. DQN Extensions 8. Stocks Trading Using RL 9. Policy Gradients – An Alternative 10. The Actor-Critic Method 11. Asynchronous Advantage Actor-Critic 12. Chatbots Training with RL 13. Web Navigation 14. Continuous Action Space 15. Trust Regions – TRPO, PPO, and ACKTR 16. Black-Box Optimization in RL 17. Beyond Model-Free – Imagination 18. AlphaGo Zero Other Books You May Enjoy Index

Cross-entropy on CartPole

The whole code for this example is in Chapter04/01_cartpole.py, but the following are the most important parts. Our model's core is a one-hidden-layer neural network, with ReLU and 128 hidden neurons (which is absolutely arbitrary). Other hyperparameters are also set almost randomly and aren't tuned, as the method is robust and converges very quickly.

HIDDEN_SIZE = 128
BATCH_SIZE = 16
PERCENTILE = 70

We define constants at the top of the file and they include the count of neurons in the hidden layer, the count of episodes we play on every iteration (16), and the percentile of episodes' total rewards that we use for elite episode filtering. We'll take the 70th percentile, which means that we'll leave the top 30% of episodes sorted by reward:

class Net(nn.Module):
    def __init__(self, obs_size, hidden_size, n_actions):
        super(Net, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(obs_size, hidden_size),
     ...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image